CLASSIFICATION OF THE ISOMORPHIC TYPES OF MARTINGALE-H l SPACES

BY

PAUL F. X. MÜLLER Johannes Kepler Universität Linz, Institute für Mathematik, A-4040 Linz, Austria

ABSTRACT

Let (\mathcal{F}_n) be an increasing sequence of finite fields on a probability space $({\Omega}, {\mathscr{F}}, {\bf P})$ where ${\mathscr{F}}$ denotes the σ -algebra generated by $\bigcup {\mathscr{F}}_n$. Then $H^1[(\mathscr{F}_n)]$ is isomorphic to one of the following spaces: $H^1(\delta)$, $(\Sigma H_n^1)_t$, I^1 .

Introduction

In his paper [4] B. Maurey asks: "Peut on classifier les classes d'isomorphism des espaces $H^1[(F_n)]$?" In this note we show that such a classification is indeed possible.

More precisely we have the following

THEOREM 1. Let $H^1[(\mathcal{F}_n)]$ be infinite dimensional:

(a) *If l²* embeds into $H^1[(\mathcal{F}_n)]$ *then* $H^1[(\mathcal{F}_n)]$ *is isomorphic to* $H^1(\delta)$ *.*

(b) If l^2 does not embed into $H^1[(\mathcal{F}_n)]$ and if $H^1((\mathcal{F}_n)]$ is not isomorphic to a *complemented subspace of l' then H'*[(\mathcal{F}_n)] *is isomorphic to* $(\Sigma H_n^1)_{\mu}$.

(c) If l^2 does not embed into $H¹[(\mathscr{F}_n)]$ and if $H¹[(\mathscr{F}_n)]$ is isomorphic to a *complemented subspace of l¹ then H¹[(* \mathscr{F}_n *)] is isomorphic to l¹.*

Part (a) of Theorem 1 was proven by the present author in [5]. Part (c) of Theorem 1 holds for any infinite dimensional complemented subspace of l_1 (cf. [3]). The rest of the paper is used to prove part (b). Our method of proof permits at the same time a characterisation of the isomorphic type of given

Received November 27, 1986 and in revised form March 19, 1987

 $H^1[(\mathcal{F}_n)]$ space in terms of the underlying measure space $(\Omega,(\mathcal{F}_n),P)$ (cf. Theorem $l(a)$).

The constructions given below rely on a result taken from Maurey's paper on $H¹$ spaces. Let's mention two isomorphic invariants which are shared by $H^1(\delta)$, $(\Sigma H^1_n)_t$ and l^1 .

COROLLARY 2. (a) $H^1[(\mathcal{F}_n)]$ *has an unconditional basis*;

(b) $H^1[(\mathcal{F}_n)]$ *is primary (i.e., for any projection P on* $H^1[(\mathcal{F}_n)]$ *either* $P(H^1[(\mathscr{F}_n)])$ *or* $(\text{Id}-P)(H[(\mathscr{F}_n)])$ *is isomorphic to* $H^1[(\mathscr{F}_n)]$.

PROOF. ad(a) By Theorem 1 it is sufficient to observe that $H^1(\delta)$, $(\Sigma H_n^1)_{t'}$ and $l¹$ have unconditional basis.

ad(b) $H^1(\delta)$, (ΣH_n^1) are primary [6], l^1 is primary; cf. [3].

The Banach space decomposition principle of Pelczynski is repeatedly applied below. It would be very satisfying to construct an unconditional basis in $H^1[(\mathcal{F}_n)]$ and to explicitly analyse properties of such a basis.

§0. Definitions and notations

Let (\mathcal{F}_n) be a sequence of increasing finite fields of subsets of Ω . Let **P** be a probability measure on (Ω, \mathscr{F}) , where $\mathscr{F} = \vee_{n=1}^{\infty} \mathscr{F}_n$. Given $f \in L^1[(\Omega, \mathscr{F}, P)]$ we write

$$
S(f)(t) := \left(\sum \left(\mathbf{E}(f \mid \mathcal{F}_n) - \mathbf{E}(f \mid \mathcal{F}_{n-1})\right)^2\right)^{1/2}(t),
$$

$$
H^1[(\mathcal{F}_n)] := \{f \in L^1[(\Omega, \mathcal{F}, P)] : S(f) \in L^1[(\Omega, \mathcal{F}, P)]\},
$$

$$
BMO[(\mathcal{F}_n)]
$$

$$
:= \left\{ f \in L^2[(\Omega, \mathcal{F}, P)] : \sup_n \parallel E((f - E(f \mid \mathcal{F}_{n-1}))^2 \mid \mathcal{F}_n \parallel_{\infty}^{1/2} < \infty \right\}
$$

EXAMPLES. Let \mathcal{L}_n denote the algebra of subsets of $(0, 1]$ generated by dyadic intervals of length 2^{-n} .

(1) $H^1[(\mathcal{L}_n)]$ will be called "the dyadic H^{1} " and denoted by $H^1(\delta)$.

(2) $\mathscr{F}_m := \mathscr{L}_{\max(n,m)}, m \in \mathbb{N}.$

 $H^1[(\mathcal{F}_n)]$ will be denoted by H^1_n .

For a different description of these spaces see, e.g., [1], [4], [5].

O.a. An algebraic basis of $\mathcal{D}_n := \{f : f \text{ is } \mathcal{F}_{n+1} \text{ measurable and }$ $\mathbf{E}(f | \mathcal{F}_n) = 0$

Let $l(n)$ denote the numbers of atoms in \mathcal{F}_n . Let $\mathcal{A}_n = \{A_{n,k} : 1 \leq k \leq l(n)\}\$ denote the collection of atoms in \mathcal{F}_n . For each $n \in \mathbb{N}$ and $k \leq l(n)$ we define (n_k) as follows:

$$
A_{n,k} = \bigcup_{l=n_{k-1}+1}^{n_k} A_{n+1,l}.
$$

We assume that the enumeration of the atoms in \mathscr{F}_{n+1} is such that there are n_k 's as above and such that:

 $P(A_{n+1,i}) \leq P(A_{n+1,i+1})$ for $n_{k-1} + 1 \leq j < n_k$.

Now we define:

$$
h_{n,j} := \begin{cases} 1 & \text{on } A_{n+1,j}, \\ -\frac{\mathbf{P}(A_{n+1,j})}{\mathbf{P}(A_{n+1,j+1})} & \text{on } A_{n+1,j+1}. \end{cases}
$$

$$
\mathscr{E}_n(A_{n,k}) := \{A_{n+1,j} : n_{k-1} + 1 \leq j < n_k\},
$$

$$
\mathscr{E}_n := \bigcup_{k=1}^{l(n)} \mathscr{E}_n(A_{n,k}), \quad \mathscr{E} := \bigcup_{n=1}^{\infty} \mathscr{E}_n, \quad E_n := \bigcup_{E \in \mathscr{E}_n} E.
$$

The function $h_{n,i}$ may also be indexed by elements of \mathscr{E} :

$$
h_A := h_{n,j}
$$
 iff $A = \{t : h_{n,j}(t) = 1\}.$

Some comments are in order: For $j := n_k$ the function $h_{n,j}$ is *not* defined. The atom A_{n+1,n_k} is the biggest atom in \mathcal{F}_{n+1} which is a subset of $A_{n,k}$.

 $\mathscr{E}_n(A_{n,k})$ contains all atoms of \mathscr{F}_{n+1} which are subsets of $A_{n,k}$ with the exception of $A_{n+1,n}$. $\&$ has the following property: $E \in \& F \in \&$ and $E \cap F \neq 0$ then either $E \subset F$ or $F \subset E$.

Hence, for $\mathscr{G} \subset \mathscr{E}$ we may talk about the maximal subsets of \mathscr{G} with respect to inclusion.

We use the following notations below: For $J \subset \Omega$ we define:

 $G_1(J):=\{E\in\mathscr{E}, E\subseteq J, E \text{ maximal}\}\$ and $G_n(J):=-\bigcup G_1(I).$ $I = U_{n-1}(J)$

Let \mathscr{D} be a collection of subsets of Ω . For $J \subset \Omega$ we write:

$$
J \cap \mathcal{Q} := \{D : D \in \mathcal{Q} \text{ and } D \subset J\},
$$

$$
\mathcal{Q}^* := \bigcup \{D : D \in \mathcal{Q}\}, \quad G_1(J, \mathcal{Q}) := G_1(J) \cap \mathcal{Q},
$$

$$
G_n(J, \mathcal{Q}) := \bigcup_{I \in G_{n-1}(J, \mathcal{Q})} G_1(I, \mathcal{Q}).
$$

Theorem 1 can be rephrased in terms of the underlying measure space $(\Omega, (\mathscr{F}_n), P)$:

$$
A^* := \bigcap_{\varepsilon > 0} \bigcup \{ B : B \in \mathscr{A}_l, l \in \mathbb{N}, P(B) \leq \varepsilon \}.
$$

THEOREM 1a. *Let* $H^1[(\mathcal{F}_n)]$ *be infinite dimensional:* (a) $P(A^x) > 0$ *iff* $H^1[(\mathcal{F}_n)]$ *is isomorphic to* $H^1(\delta)$ *.* (b) $P(A^x) = 0$ *and*

$$
\sup_{B\in\mathcal{S}}\frac{1}{\mathbf{P}(B)}\sum_{E\in B\cap\mathcal{S}}\mathbf{P}(E)=\infty
$$

iff $H^1[(\mathcal{F}_n)]$ *is isomorphic to* $(\Sigma H^1_n)_t$. (c) $P(A^{\infty}) = 0$ *and*

$$
\sup_{B\in\mathcal{S}}\frac{1}{P(B)}\sum_{E\in B\cap\mathcal{S}}P(E)<\infty
$$

iff $H^1[(\mathcal{F}_n)]$ *is isomorphic to* l^1 *.*

Our proof makes use of

THEOREM A (Maurey [4]). $H^1[(\mathcal{F}_n)]$ *is isomorphic to a complemented subspace of H¹(* δ *)* (*provided* (\mathcal{F}_n) *is an increasing sequence of finite* (!) *fields*).

THEOREM B ([5]). (a) $P(A^{\infty}) > 0$ *implies* $H^1[(\mathcal{F}_n)] \cong H^1(\delta)$. (b) $P(A^{\infty}) = 0$ *implies that* l^2 *is not isomorphic to a subspace of* $H^1[(\mathcal{F}_n)]$.

§1. Let's first collect a few lemmas, concerning the behaviour of (h_{nj}) .

LEMMA 2. $\mathscr{D}_n := \{f: E(f | \mathscr{F}_{n+1}) = f \text{ and } E(f | \mathscr{F}_n) = 0\}.$

- (a) $\{h_A, A \in \mathcal{E}_n\}$ forms an algebraic basis of \mathcal{Q}_n .
- (b) *Given* $(f_m)_{m \in \mathbb{N}}$ *where* $f_m \in \mathcal{D}_m$ *. Then*

$$
\int_{\Omega} \left(\sum_{m=n}^{x} f_m^2 \right)^{1/2} d\mathbf{P} \leq 2 \int_{\bigcup_{m=n}^{x} E_m} \left(\sum_{m=n}^{x} f_m^2 \right)^{1/2} d\mathbf{P}.
$$

PROOF. (a) is clear.

(b) The proof is divided into two parts: We first find a minorization of

$$
\int_{\bigcup \frac{x}{m-n}} \int_{E_m} \left(\sum_{m=n}^{\infty} f_m^2 \right)^{1/2}.
$$

This will be followed by a proper majorization of

$$
\int_{\Omega \setminus \cup \mathfrak{m}_{n-n}E_m} \left(\sum f_m^2 \right)^{1/2} . \qquad \qquad \Box
$$

In both parts the following sets must be studied:

$$
\Delta(n, k) := E_n \cup \cdots \cup E_{n+k} \setminus E_n \cup \cdots \cup E_{n+k-1},
$$

$$
J_{n,k} := \{ j : A_{n+k,j} \cap \Delta(n, k) \neq \emptyset \},
$$

$$
K_{n,k} := \{ (n+k)_j - 1 : j \in J_{n,k} \}.
$$

Part 1. By (a) f_{n+k} has a well-defined expansion with respect to $(h_{n+k,j})$. Hence there exists a well-defined sequence $(a_{n+k,j})$ such that $f_{n+k} =$ $\sum h_{n+k,j} a_{n+k,j}$. Fix $l \in J_{n,k}$. We put $l_1 := ((n + k)_{l-1} + 1)$ and

$$
l_2:=(((n+k)_l)-1).
$$

Then

$$
(f_{n+k})\chi_{\Delta(n,k)}=\bigg(\sum_{l\in J_{n,k}}\sum_{j=l_1}^{l_2}a_{n+k,j}h_{n+k,j}\bigg)\chi_{\Delta(n,k)}.
$$

Moreover, by definition of $h_{n+k,j}$:

$$
\left(\sum_{j=l_1}^{l_2} a_{n+k,j} h_{n+k,j}\right) \cdot \chi_{\Delta(n,k)}
$$
\n
$$
= a_{n+k,l_1} \chi_{A_{n+k+1,l_1}} + \sum_{j=l_1+1}^{l_2} \chi_{A_{n+k+1,j}} \cdot \left(a_{n+k,j} - a_{n+k+1,j-1} \cdot \frac{P(A_{n+k+1,j-1})}{P(A_{n+k+1,j})}\right).
$$

Hence

$$
\int_{\Delta(n,k)} |f_{n+k}| = \sum_{l \in J_{n,k}} |a_{n+k,l_1}| P(A_{n+k+1,l_1})
$$

+
$$
\sum_{j=l_1+1}^{l_2} P(A_{n+k+1,j}) |a_{n+k,j} - a_{n+k,j-1}| \cdot \frac{P(A_{n+k+1,j-1})}{P(A_{n+k+1,j})}
$$

$$
\geq \sum_{l \in J_{n,k}} |a_{n+k,l_1}| \cdot P(A_{n+k,l_1}) + |a_{n+k,l_2}|
$$

$$
\cdot P(A_{n+k+1,l_2}) - a_{n+k,l_1} \cdot P(A_{n+k+1,l_1})|
$$

$$
\geq \sum_{l \in J_{n,k}} |a_{n+k,l_2}| \cdot P(A_{n+k+1,l_2})
$$

$$
= \sum_{i \in K_{n,i}} |a_{n+k,i}| \cdot P(A_{n+k+1,i}).
$$

REMARK. (1) and (2) hold by an application of the triangle inequality. Now we estimate as follows:

$$
\int_{\bigcup_{m=n}^{\infty}E_m}\left(\sum_{m=n}^{\infty}f_m^2\right)^{1/2}\geq \int_{E_n}|f_n|+\sum_{k=1}^{\infty}\int_{\Delta(n,k)}|f_{n+k}|
$$

$$
\geq \sum_{k\geq 0}^{\infty}\sum_{i\in K_{n,k}}|a_{n+k,i}|\mathbf{P}(A_{n+k+1,i}).
$$

Part 2. Fix $k \in \mathbb{N}$, $A \in \mathcal{A}_{n+1} \setminus \mathcal{E}_n$. We start with the following identity:

$$
f_{n+k}\chi_{(\Omega\setminus\bigcup_{m>n}E_m)\cap A}=\begin{cases} a_{n+k,i}h_{n+k,i}\cdot\chi_{(\Omega\setminus\bigcup_{m>n}E_m)\cap A} & \text{if } i\in K_{n,k}, \\ 0 & \text{else.} \end{cases}
$$

For A given there exists exactly one $i \in K_{n,k}$ such that $A_{n+k+1,i+1}$ is contained in A. Lets call it $i(k)$. Then we get:

(i)
$$
A_{n+k+1,i(k)+1} \supset A_{n+(k+1)+1,i(k+1)+1} \supset \cdots
$$

(ii)
$$
\bigcap_{k>0} A_{n+k+1,i(k)+1} = \left(\Omega \setminus \bigcup_{m \geq n} E_m\right) \cap A,
$$

(iii) $t \in (\Omega \setminus \bigcup_{m \geq n} E_m) \cap A$ implies

$$
h_{n+k,i(k)}(t)=-\frac{\mathbf{P}(A_{n+k+1,i(k)})}{\mathbf{P}(A_{n+k+1,i(k)+1})}.
$$

Hence, we have the following identity:

$$
\left(\sum_{k\geq 0} f_{n+k}\right) \chi_{(\Omega\setminus\cup_{m\geq n}E_m)\cap A}
$$
\n
$$
= \left(\sum_{\substack{k\geq 0\\ i\in K_{n,k}}} \sum_{A_{n+k+1,i+1}\subset A} (-1)a_{n+k,i} \cdot \frac{\mathbf{P}(A_{n+k+1,i})}{\mathbf{P}(A_{n+k+1,i+1})}\right) \chi_{(\Omega\setminus\cup_{m\geq n}E_m)}.
$$

And this implies:

$$
\int_{(\Omega\setminus\bigcup_{m\geq n}E_m)\cap A}\left(\sum f_m^2\right)^{1/2}
$$
\n
$$
= \mathbf{P}\left(\left(\Omega\setminus\bigcup_{m=n}^{\infty}E_m\right)\cap A\right)\left(\sum_{\substack{k\geq 0\\i\in K_{n,k}}}\sum_{A_{n+k+1,i+1}\subset A}|a_{n+k,i}|^2\cdot\frac{\mathbf{P}^2(A_{n+k+1,i})}{\mathbf{P}^2(A_{n+k+1,i+1})}\right)^{1/2}.
$$

We are now thoroughly prepared to understand the following inequalities:

$$
\int_{(\Omega \setminus \bigcup_{m \geq n} E_m)} \left(\sum_{m \geq n} f_m^2 \right)^{1/2} \leq \sum_{A \in \mathcal{A}_{n+1} \setminus \mathcal{E}_n} \left(\sum_{\substack{k \geq 0 \\ i \in K_{n,k}}} \sum_{A_{n+k+1,i+1} \subset A} |a_{n+k,i}|^2 \mathbf{P}^2(A_{n+k+1,i}) \right)^{1/2}.
$$

Combining the above estimates we get

$$
\int_{\Omega\setminus\cup\frac{w}{m-n}E_m}\bigg(\sum f_m^2\bigg)^{1/2}\leq \int_{\cup\frac{w}{m-n}E_m}\bigg(\sum f_m^2\bigg)^{1/2}.
$$

Hence we get

$$
\int \left(\sum_{m=n}^{\infty} f_m^2\right)^{1/2} d\mathbf{P} = \int_{\Omega \setminus \cup_{m=n}^{\infty} E_m} \left(\sum_{m=n}^{\infty} f_m^2\right)^{1/2} d\mathbf{P} + \int_{\cup_{m=n}^{\infty} E_m} \left(\sum_{m=n}^{\infty} f_m^2\right)^{1/2} d\mathbf{P}
$$

\n
$$
\leq 2 \int_{\cup_{m=n}^{\infty} E_m} \left(\sum_{m=n}^{\infty} f_m^2\right)^{1/2} d\mathbf{P}.
$$

LEMMA 3. *Suppose that*

$$
\sup_{B\in\mathscr{E}}\frac{1}{\mathbf{P}(B)}\sum_{E\in B\cap\mathscr{E}}\mathbf{P}(B)=\infty,
$$

then there exists $\mathcal{G} \subset \mathcal{E}$ *such that:*

 $*$ for $I \in \mathbb{N}$, $E, F \in \mathscr{G} \cap \mathscr{A}$, we get: $E \cap F = \varnothing$ implies $\text{supp } h_E \cap F$ $\text{supp } h_F = \varnothing$,

* $\sup_{B\in\mathscr{G}}(1/\mathbf{P}(B))\sum_{E\in B\cap\mathscr{G}}\mathbf{P}(E)=\infty.$

PROOF. Obvious.

LEMMA 4 (cf. [1] Ch. X, Lemma 3.2). *Given* $\mathcal{B} \subset \mathcal{E}, B \in \mathcal{B}, n \in \mathbb{N}, \gamma < 1$ *such that*

$$
\frac{1}{\mathbf{P}(B)}\sum_{E\in B\cap\mathscr{B}}\mathbf{P}(E)>\frac{n}{1-\gamma},\,
$$

then there exists $I \in B \cap B$ *such that*

$$
\Sigma\{\mathbf{P}(A):A\in G_n(I,\mathscr{B})\}>\gamma\mathbf{P}(I).
$$

PROOF. Suppose not; then

$$
\frac{1}{\mathbf{P}(B)} \sum_{E \in B \cap \mathcal{A}} \mathbf{P}(E) = \frac{1}{\mathbf{P}(B)} \sum_{m \in \mathbb{N}} \sum_{E \in G_m(B, \mathcal{A})} \mathbf{P}(E)
$$

$$
= \frac{1}{\mathbf{P}(B)} \sum_{i=1}^n \sum_{m=N} \sum_{E \in G_{mn} + (B, \mathcal{A})} \mathbf{P}(E)
$$

$$
\leq \frac{1}{\mathbf{P}(B)} \sum_{i=1}^n \left(\sum_{m \in \mathbb{N}} \mathbf{P}(B) \gamma^m \right)
$$

$$
\leq \frac{n}{1 - \gamma},
$$

a contradiction!

LEMMA 5. Let $\mathcal{A} \subset \mathcal{G}$ be given. \mathcal{G} is as in the conclusion of Lemma 3. (a) *For* $h_{\mathscr{A}} := \Sigma\{h_{\mathscr{A}} : A \in \mathscr{A}\}\$ *we get*

$$
S^2(h_{\mathscr{A}}) = \Sigma\{h^2_A : A \in \mathscr{A}\}.
$$

(b) There exists $\mathcal{B} \subset \mathcal{A}$ such that

$$
\frac{1}{2} < S^2(h_{\mathcal{B}})(t), \qquad t \in \mathcal{A}^*;
$$
\n
$$
\frac{3}{2} > S^2(h_{\mathcal{B}})(t), \qquad t \in \Omega.
$$

PROOF.

PROOF.
\n(a)
\n
$$
S^{2}(h_{\mathscr{A}}) = \sum_{k} \left(\sum_{k} \left\{ h_{A} : A \in \mathscr{A} \cap \mathscr{A}_{k} \right\} \right)^{2}
$$
\n
$$
= \sum_{k} \sum_{k} \left\{ h_{A}^{2}(t) : A \in \mathscr{A} \cap \mathscr{A}_{k} \right\}.
$$

(b) We will apply a stopping time argument: Define

$$
l_0 = \inf\{l : \mathcal{A} \cap \mathcal{A}_l \neq \emptyset\}
$$

and put $\mathscr{B} := \mathscr{A} \cap \mathscr{A}_{\mathscr{b}}$. Next pick $J \in \mathscr{A}_{\mathscr{b}+1} \cap \mathscr{A}$. We will decide whether or not to put *J* into our collection \mathcal{B} according to the following rule:

If $S^2(h_{\mathcal{A}})/J > \frac{1}{2}$ then \mathcal{B} remains unchanged.

If $S^2(h_{\mathcal{B}})/J < \frac{1}{2}$ then $\mathcal{B} := \mathcal{B} \cup \{J\}.$

After having played this game with all $J \in \mathcal{A}_{h+1} \cap \mathcal{A}$ we consider $J \in \mathcal{A}_{h+2}$ \cap $\mathscr A$ and continue.

Taking into account that $\bigcup_{i=1}^{\infty} (\mathcal{A}_i \cap \mathcal{A})^* = \mathcal{A}^*$ we arrive at the desired result.

LEMMA 6. *Fix* $\mathcal{B} \subset \mathcal{G}$ *. Fix n* $\in \mathbb{N}$. Let $p \in \mathbb{N}$ be the least integer bigger than $\max(-\ln_2(\frac{1}{2}(1-2^{-1/n}))$, $-\ln_2(\frac{1}{2}(2^{+1/n}-1)))$, *then*

$$
\sum {\{\mathbf{P}(A): A \in G_{p\cdot n}(I_0, \mathscr{B})\}} \geq (1 - 8^{-n})\mathbf{P}(I_0)
$$

implies that $G_{m,p}(I_0, \mathcal{B})$, $m \leq n$ may be decomposed into (\mathcal{B}_{mi}) , $i \in \{0, \ldots, 2^m-1\}$, *such that for* $m \leq n$:

(a) $I \in \mathcal{B}_{mi}$, $j \in \{0, 1\}$ *we get*

 $P(I \cap \mathcal{B}_{m+1,2i+i}^*) \leq (\frac{1}{2} + 2^{-p})P(I),$

(b) $\mathscr{B}_{m+1,2i}^* \cap \mathscr{B}_{m+1,2i+1}^* = \emptyset$

$$
\mathscr{B}_{m+1,2i}^* \cup \mathscr{B}_{m+1,2i+1}^* \subset \mathscr{B}_{m+1}^*,
$$

(c) $P(I_0)(2^{-m}/2 - 4^{-n}) \le P(\mathcal{B}_{m,i}^*) \le P(I_0)2^{-m} \cdot 2$.

PROOF. We will repeatedly apply the following remark: Given I in \mathcal{A}_1 , $l \in \mathbb{N}$ then $J \in G_p(I, \mathcal{B})$ implies

$$
P(J) \leq 2^{-p} P(I).
$$

Step 00. $\mathscr{B}_{0,0} := I_0$. The previous remark gives us: $\mathscr{B}_{1,0}, \mathscr{B}_{1,1} \subset G_p(I_0, \mathscr{B})$ such that for $j \in \{0, 1\}$

$$
(\frac{1}{2}-2^{-p})P(I_0) < P(\mathcal{B}_{1,j}^* \cap I_0) < (\frac{1}{2}+2^{-p})P(I_0).
$$

Step mj. Suppose that for $m < n$, $\mathcal{B}_{0,0}, \ldots, \mathcal{B}_{m,j}$ are already defined. Pick $J \in \mathscr{B}_{m,j}$ and find $l \in \mathbb{N}$ such that $J \in \mathscr{A}_l$. Applying the remark again we may decompose

$$
J\cap G_{mp+p}(I_0,\mathscr{B})
$$

into $\mathcal{B}_{m+1,2i+j}(J), j \in \{0, 1\}$ such that

$$
\begin{aligned} (\frac{1}{2} - 2^{-p}) \mathbf{P}(J \cap G_{(m+1)\cdot p}^*(I_0, \mathscr{B})) &\leq \mathbf{P}(\mathscr{B}_{m+1,2i+j}^*(J)) \\ &\leq (\frac{1}{2} + 2^{-p}) \mathbf{P}(J \cap G_{(m+1)\cdot p}^*(I_0, \mathscr{B})). \end{aligned}
$$

Taking the union we obtain the desired decomposition of $\mathcal{B}_{m,i}$, namely:

$$
\mathscr{B}_{m+1,2i+j}:=\bigcup\{\mathscr{B}_{m+1,2i+j}(J):J\!\in\!\mathscr{B}_{m,i}\}.
$$

Taking the sum of the inequalities above we get:

$$
\frac{1}{(\frac{1}{2}+2^{-p})}\mathbf{P}(\mathscr{B}_{m+1,2i+j}^*) < \mathbf{P}(\mathscr{B}_{m+1}^* \cap G_{(m+1)p}^*(I_0, \mathscr{B}))
$$

$$
\leq \frac{1}{(\frac{1}{2}-2^{-p})}\mathbf{P}(\mathscr{B}_{m+1,2i+j}^*).
$$

Hence

$$
\frac{1}{(\frac{1}{2} + 2^{-p})} \mathbf{P}(\mathscr{B}_{m+1,2i+j}^*) < \mathbf{P}(\mathscr{B}_{m,i}^*)
$$
\n
$$
\leq \frac{1}{(\frac{1}{2} - 2^{-p})} \mathbf{P}(\mathscr{B}_{m+1,2i+j}^*) + 8^{-n} \mathbf{P}(I_0).
$$

Now put

$$
\alpha = \frac{1}{(\frac{1}{2} + 2^{-p})}, \quad \beta = \frac{1}{(\frac{1}{2} - 2^{-p})}
$$

Iterating the above procedure we obtain families $(\mathcal{B}_{m,i}), m \leq n, i \leq 2^m - 1$ such that for $j \in \{0, 1\}$

$$
\mathscr{B}_{m+1,2i}^* \cap \mathscr{B}_{m+1,2i+1}^* = \varnothing,
$$

$$
\mathscr{B}_{m+1,2i}^* \cup \mathscr{B}_{m+1,2i+1}^* \subset \mathscr{B}_{m,i}^*
$$

and

$$
\mathbf{P}(I_0) \geq \alpha^m \mathbf{P}(\mathscr{B}_{m+1,2i+j}^*),
$$

$$
\mathbf{P}(I_0) \leq \beta^m \mathbf{P}(\mathscr{B}_{m+1,2i+j}^*) + (8^{-n}) \left(\sum_{k=1}^m \beta^k\right).
$$

Our choice of p gives now the desired estimates.

LEMMA 7. *Fix n* \in N, *define p as in Lemma 6 and suppose that there exists* $B \in \mathcal{G}$ such that

$$
\frac{1}{P(B)}\sum_{E\in B\cap G}\mathbf{P}(E)\geq (p\cdot n)\cdot 8^n.
$$

Then there exists $I \in B \cap \mathcal{G}, \mathcal{Q}_{m,i} \subset \mathcal{G} \cap I, j \leq 2^m - 1, m < n$ *such that:*

(a) $i_n: H_{n-1}^1 \to H^1[(\mathscr{F}_k)], h_{mj} \to h_{\mathscr{Q}_{mi}} \cdot P(I)^{-1}$ *extends to an isomorphism onto* $span\{h_{\mathcal{Q}_m}: m < n, 0 \leq j \leq 2^m - 1\}.$

(b) $P_n: H^1[(\mathscr{F}_k)] \rightarrow H^1[(\mathscr{F}_k)],$

$$
f \rightarrow \sum_{(mj)} \frac{\langle f, h_{\mathcal{D}_{mj}} \rangle}{\| h_{\mathcal{D}_{mj}} \|_2^2} \cdot h_{\mathcal{D}_{mj}}
$$

is a bounded idempotent operator onto $\text{span}\{h_{\mathcal{D}_{m}}: m < n, 0 \leq j \leq 2^m - 1\}.$

PROOF. Lemma 4 implies that there exists $I \subset \mathcal{G}$ such that

$$
\Sigma \left\{ \mathbf{P}(A): A \in G_{n \cdot p}(I, \mathcal{G}) \right\} > (1 - 8^{-n}) P(I).
$$

Hence by Lemma 6 there exists a family $({\cal B}_{m,i}), m \leq n$ having the proposition (a), (b), (c) of Lemma 6.

Next fix $J \in \mathscr{B}_{m,i}$: We apply Lemma 5 to the family $J \cap$ ${***m* \choose m+1,2i} \cup \mathcal{B}_{m+1,2i+1}**$ } and denote the resulting subfamily by $\mathcal{D}_{m,i}(J)$.

Finally we put: $\mathscr{D}_{m,i} = \bigcup \{ \mathscr{D}_{m,i}(J): J \in \mathscr{B}_{m,i} \}$ and

$$
h_{\mathcal{D}_{m,i}} = \sum \{h_A : A \subset \mathcal{D}_{m,i}\}.
$$

To show that i_n extends to an isomorphism we take $(a_{m,i})$, $m < n$, $i \leq 2^m - 1$ arbitrary. Let's first define $(m, i) \supset (k, j)$ iff $\mathscr{B}^*_{m,i} \supset \mathscr{B}^*_{k,j}$.

$$
\left\| i_{n} \left(\sum a_{m,i} h_{m,i} \right) \right\| = \left\| \sum a_{m,i}, h_{\mathcal{D}_{m,i}} P(I)^{-1} \right\|
$$

\n
$$
\stackrel{(1)}{=} \int \left(\sum a_{m,i}^{2} S^{2}(h_{\mathcal{D}_{m,i}}) P(I)^{-2} \right)^{1/2}
$$

\n
$$
\stackrel{(2)}{\geq} \frac{1}{2} \int \left(\sum_{i=1}^{n} a_{m,i}^{2} \chi_{\mathcal{B}_{m+1,2i}^{*} \cup \mathcal{B}_{m+1,2i+1}^{*}} \cdot P(I)^{-1} \right)^{1/2}
$$

\n
$$
\stackrel{(3)}{\geq} \frac{1}{2} \sum_{j=0}^{2^{n}-1} \left(\sum_{(m,i) \supset (n,j)} a_{m,j}^{2} \right)^{1/2} P(I)^{-1}
$$

\n
$$
\cdot (P(\mathcal{B}_{n+1,2i}^{*}) + P(\mathcal{B}_{n+1,2i+1}^{*}))
$$

\n
$$
\stackrel{(4)}{\geq} \frac{1}{2} \sum_{j=0}^{2^{n}-1} \left(\sum_{(m,i) \supset (n,j)} a_{m,j}^{2} \right)^{1/2} \left(\frac{2^{-n}}{2} - \frac{8^{-n}}{4} \right)
$$

\n
$$
\stackrel{(5)}{\geq} \frac{1}{8} \left\| \sum_{m,i} a_{m,i} h_{m,i} \right\|.
$$

- (1) \equiv for $i \neq j$: supp $S(h_{\mathcal{D}_{m,i}}) \cap$ supp $S(h_{\mathcal{D}_{m,j}}) = \emptyset$ (this holds because we applied Lemma 5 to the family $J \cap {\mathscr{B}}_{m+1,2i} \cup {\mathscr{B}}_{m+1,2i+1}$ rather than to $J \cap \mathscr{B}_{m,i}$);
	- for $m \neq k$ $\mathcal{D}_{m,i}$ and $\mathcal{D}_{m,j}$ are taken from different generations of I_0 ;
- (2) this is property (b) of Lemma 5;
- (3) properties (b), (c) of Lemma 6;
- (4) property (c) of Lemma 6;
- (5) definition of H_n^1 .

It is not difficult to see now that the above chain of inequalities can be reversed (with different constants of course!).

The boundedness of P_n follows from the following fact: For $J \in \mathscr{B}_{m_0 j_0}$ the following holds:

$$
h_{\mathcal{D}_{mj}/J} = \text{const} \qquad \text{for } m < m_0,
$$
\n
$$
\int_J S^2(h_{\mathcal{D}_{mJ}}) \le P(J) 2^{-m+m_0} \quad \text{for } m \ge m_0.
$$

Now we finish the proof as follows.

As pointed out in [5] P_n is bounded iff there exists $C \in \mathbb{R}^+$ (independent of n) such that for $f = \sum a_{mj}h_{\mathcal{D}_{mi}}$ the following holds:

$$
|| f ||_{\text{BMO}([\mathscr{F}_n)]}^2 \leq C \sup_{(k,i)} 2^i \sum_{(m,j) \in (k,i)} a_{mj}^2 2^{-j}.
$$

To this end, fix $j \in \mathbb{N}$, $I \in \mathcal{A}_j$, $J(\bigcirc I) \in \mathcal{A}_{j-1}$,

$$
m_0 := \inf\{m : \exists i \leq 2^m, \exists E \in \mathcal{D}_{m,i}, E \supset J\},\
$$

$$
j_0:=k \Leftrightarrow J \subset \mathscr{D}^*_{m_0j}.
$$

Observe that for $t \in I$:

$$
(f - \mathbf{E}(f \mid \mathscr{F}_{j-1}))(t) = \left(\sum_{m \geq m_0} a_{mi} h_{\mathscr{D}_{mi}} - \int_J \left(\sum_{m \geq m_0} a_{mi} h_{\mathscr{D}_{mi}}\right) \mathbf{P}(J)^{-1}\right)(t).
$$

Hence for $t \in I$:

$$
\mathbf{E}((f-\mathbf{E}(f\mid \mathcal{F}_{j-1}))^2(\mathcal{F}_{j}))(t) \leq \sum_{m \geq m_0} a_{mi}^2 \frac{1}{\mathbf{P}(I)} \int_I h_{\mathcal{G}_{mi}}^2 + \sum_{m \geq m_0} a_{mi} \frac{1}{\mathbf{P}(J)} \int_J h_{\mathcal{G}_{mi}}^2
$$

$$
\leq 2 \sum_{(mi) \subset (m_0j_0)} a_{mi}^2 \cdot 4 \cdot 2^{m_0-m}.
$$

§2. Here we apply the information obtained above to the classification problem.

PROPOSITION 8. (a) *If*

$$
\mathbf{P}\left(\bigcap_{n=-\infty}^{\infty}\bigcup_{m=-n}^{\infty}E_m\right)=0\quad and\quad\sup_{B\in\mathcal{B}}\frac{1}{\mathbf{P}(B)}\sum_{E\in B\cap\mathcal{B}}\mathbf{P}(E)=\infty
$$

then $H^1[(\mathcal{F}_n)]$ *is isomorphic to* $(\Sigma H_n^1)_t$. (b) *If*

$$
\mathbf{P}\left(\bigcap_{n}^{\infty}\bigcup_{m=n}^{\infty}E_{m}\right)>0
$$

then there exists a subspace of H¹[(\mathcal{F}_n *)] which is isomorphic to* l^2 *.*

PROOF. Fix $n \in \mathbb{N}$, define p as in Lemma 6. ad(a) $\delta_n := \inf \{ P(A) : A \in \mathcal{A}_n \}.$ Fix $K_n > p \cdot n \cdot 8^n$. We inductively choose a sequence with the following properties: $m_0 = 0$,

*
$$
\mathbf{P}\left(\bigcup_{m=m_n}^{\infty}E_n\right)<\tfrac{1}{8}\delta_{m_{n-1}},\qquad n\geq 1;
$$

$$
\ast \ast \qquad \qquad \frac{1}{\mathbf{P}(B)} \sum_{j=m_{n-1}}^{m_n} \sum_{E \in B \cap \mathscr{E}_j} \mathbf{P}(E) \geq K_n, \quad \text{for some } B \in \bigcup_{j=m_{n-1}}^{m_n} \mathscr{E}_j.
$$

Take $f \in H^1((\mathcal{F}_n))$ we use Lemma 2 to obtain a minorization of $|| f ||_{H^1((\mathcal{F}_n))}$. Define $f_m := \mathbb{E}(f | \mathcal{F}_m) - E(f | \mathcal{F}_{m-1}),$

$$
2\int S(f) \geq \int \left(\sum_{n=1}^{\infty}\sum_{k=m_{2n}}^{m_{2n+1}}|f_k|^2\right)^{1/2} + \int \left(\sum_{n=1}^{\infty}\sum_{n=m_{2n-1}}^{m_{2n}}|f_k|^2\right)^{1/2}.
$$

We minorize each integral separately (by using \ast , and Lemma 2):

$$
C_{n} := \bigcup_{k=m_{2n}}^{m_{2n+1}} E_{k} \setminus \bigcup_{k=m_{2n+2}}^{m} E_{k},
$$

$$
\int \left(\sum_{n=1}^{\infty} \left(\sum_{k=m_{2n}}^{m_{2n+1}} |f_{k}|^{2}\right) \chi_{c_{n}}\right)^{1/2} = \sum_{n=1}^{\infty} \int \left(\sum_{k=m_{2n}}^{m_{2n+1}} |f_{k}|^{2}\right)^{1/2} \cdot \chi_{c_{n}}
$$

$$
> \frac{7}{8} \sum_{n=1}^{\infty} \int \left(\sum_{k=m_{2n}}^{m_{2n+1}} |f_{k}|^{2}\right)^{1/2} \cdot \chi_{\bigcup_{k=m_{2n}}^{m_{2n+1}} E_{k}}
$$

$$
\geq \frac{1}{4} \sum_{n=1}^{\infty} \int \left(S\left(\sum_{k=m_{2n}}^{m_{2n+1}} f_{k}\right)\right).
$$

Moreover $X_n:=(\text{span}\{f_m: f_m\in\mathcal{D}_m, m_n\leq m < m_{m+1}\})$ contains a complemented copy of H_n^1 (by ** and Lemma 7).

All that implies that $H^1[(\mathcal{F}_n)]$ contains a complemented copy of $(\Sigma H_n^1)_{l}$.

On the other hand X_n is a 1-complemented subspace of $H^1[(\mathcal{F}_n)]$. By Maurey's theorem there exist linear operators u_n , v_n such that the diagram

commutes and $||u_n|| \cdot ||v_n|| < c$ (with c independent of n). (Observe that we are actually factorizing through $H_{k_n}^1$ for some large k_n .)

Using the isomorphism $H^1[(\mathcal{F}_n)] \cong (\Sigma X_n)_l$, we conclude that the diagram

commutes, with $||u|| \cdot ||v|| < \infty$.

Now I apply the decomposition method, and we are done. ad(b) We first choose $\mathscr{G} \subset \mathscr{E}$ such that

* for
$$
l \in \mathbb{N}
$$
, $E, F \in \mathscr{G} \cap \mathscr{A}_l$ we get $E \cap F \neq 0$ implies
supp $h_E \cap$ supp $h_F \neq \emptyset$;

** for $\tilde{E}_n = (E_n \cap \mathcal{G})^*$ we obtain $\mathbf{P}\left(\bigcap_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \tilde{E}_m\right) > 0.$

Next we observe that $\bigcap_j G_j^*(\Omega \mid \mathscr{G}) = \bigcap_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \tilde{E}_m$. Hence (by monotony) there exists $j_0 \in \mathbb{N}$ such that

$$
\mathbf{P}\left(\bigcap_{n=1}^{\infty}\bigcap_{m=n}^{\infty}\tilde{E}_m\right)\leq \mathbf{P}(\mathscr{G}_{j}^{*}(\Omega \mid \mathscr{G}))\leq 2\mathbf{P}\left(\bigcap_{n=1}^{\infty}\bigcap_{m=n}^{\infty}\tilde{E}_m\right) \text{ for } j\geq j_0.
$$

By Lemma 5 there exists $\mathcal{B}_j \subset G_j(\Omega \mid \mathcal{G})$ such that:

 $S^2(h_{\mathscr{B}_i}) < \frac{3}{2}$ on Ω , and $S^2(h_{\mathscr{B}_i}) > \frac{1}{2}$ on $G_i^*(\Omega \mid \mathscr{B})$;

moreover

$$
\mathrm{supp} S^2(h_{\mathscr{B}_i}) \subset G_{j-1}^*(\Omega \mid \mathscr{G})
$$

and

$$
\sum_{j > j_0} a_j^2 S^2(h_{\mathcal{B}_j}) = S^2 \left(\sum_{j > j_0} a_j h_{\mathcal{B}_j} \right) \text{ for } (a_j) \text{ arbitrary.}
$$

It's now easy to see that $(h_{\mathcal{A}_j})_{j>j_0}$ is equivalent to the unit vector basis in l^2 . Indeed,

$$
\bigg\|\sum_{j>j_0}a_jh_{\mathscr{B}_j}\bigg\|_{H^1[(\mathscr{F}_n)]}=\int\bigg(\sum_{j>j_0}a_j^2S^2(h_{\mathscr{B}_j})\bigg)^{1/2}
$$

and

 \Box

$$
\left(\sum_{j>j_0}a_j^2\right)^{1/2}\sqrt{\frac{1}{2}}\mathbf{P}(\bigcap\bigcap\widetilde{E}_m)\leq \int \left(\sum a_j^2S^2(h_{\mathcal{B}_j})\right)^{1/2}
$$

$$
\leq \left(\sum_{j>j_0}a_j^2\right)^{1/2}\sqrt{\frac{1}{2}}\mathbf{P}(G_{j0}^{\mathcal{A}}(\Omega \mid \mathcal{G})).
$$

By our choice of j_0 :

$$
\frac{\sqrt{3}}{2} \leq \frac{\sqrt{\frac{3}{2}}}{\sqrt{2}} \frac{\mathbf{P}(G_{j_0}^*\! (\Omega \mid \mathscr{G}))}{\mathbf{P}\left(\bigcap_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \tilde{E}_n\right)} \leq \sqrt{3}.
$$

PROPOSITION 9. *If*

$$
\sup_{B\in\mathcal{S}}\frac{1}{\mathbf{P}(B)}\sum_{E\in B\cap\mathcal{S}}\mathbf{P}(E)<\infty,
$$

then $H^1[(\mathcal{F}_n)]$ *is isomorphic to a complemented subspace of* l^1 *.*

PROOF. Take $A \in \mathcal{A}_n$, n, A arbitrary,

$$
M > \frac{1}{\mathbf{P}(A)} \sum_{E \in \mathcal{E} \cap A} \mathbf{P}(E)
$$

=
$$
\frac{1}{\mathbf{P}(A)} \sum_{n \in \mathbb{N}} \sum_{E \in G_n(A)} \mathbf{P}(E)
$$

=
$$
\frac{1}{\mathbf{P}(A)} \sum_{n \in \mathbb{N}} \mathbf{P}(G_n^*(A)).
$$

Hence $P(G_{AM}^*(A)) \le P(A)/4$ (cf. [2], p. 820). Given $f = \sum h_A a_A$ with $f \in H^1[(\mathcal{F}_n)]$ we write $G_n := G_n(\Omega)^*$:

$$
\| S(f) \|_1 = \int \left(\sum_{n \in \mathbb{N}} S^2 \left(\sum_{A \in G_n(\Omega)} h_A a_A \right) \right)^{1/2}
$$

\n
$$
\geq \frac{1}{4M} \sum_{j=1}^{4M} \int \left(\sum_{n \in \mathbb{N}} S^2 \left(\sum_{A \in G_{4Mn+j}(\Omega)} h_A a_A \right)^{1/2} \right)
$$

\n
$$
\geq \frac{1}{4M} \sum_{j=1}^{4M} \sum_{n \in \mathbb{N}} \int S \left(\sum_{A \in G_{4Mn+j}(\Omega)} h_A a_A \right) \chi_{G_{4Mn+j}} \setminus \bigcup_{m=n+1}^{\infty} G_{4Mm+j}
$$

$$
\geqq \frac{1}{8M}\sum_{j=1}^{4M}\sum_{n\in\mathbb{N}}\int S\left(\sum_{A\in G_{4Mn+1}(\Omega)}h_{A}a_{A}\right)\chi_{G_{4Mn+j}}.
$$

Fix now $n \in \mathbb{N}$:

$$
\int S\left(\sum \{h_A a_A : A \in G_n(\Omega)\}\right) \chi_{G_n}
$$
\n
$$
= \sum_{i} \int S\left(\sum \{h_A a_A : A \in G_n(\Omega)\}\right) \chi_{(G_n(\Omega) \cap \mathscr{A})^*}
$$
\n
$$
\geq \frac{1}{2} \sum_{i} \int S\left(\sum \{h_A a_A : A \in G_n(\Omega) \cap \mathscr{A}_i\}\right).
$$

Define now

$$
X_{n,l}:=\left(\left\{\sum h_A a_A : A\in G_n(\Omega)\cap\mathscr{A}_l\right\},\|\|\|_{H^1}\right).
$$

We have shown up to now that

$$
H^1[(\mathcal{F}_n)] \text{ is isomorphic to } \left(\sum_{n,l} X_{n,l}\right)_l.
$$

It remains to show that $X_{n,l}$ is uniformly complemented in l^1 . To do so, we observe that

$$
i_{n,l}: X_{n,l} \to l^+,
$$

$$
f \to ((f/B) \cdot \mathbf{P}(B), B \in G_n(\Omega) \cap \mathcal{A}_l)
$$

is an isomorphism (by Lemma 2(b)).

Moreover, by Lemma 2(a), for any sequence β_B , $B \in G_n(\Omega) \cap \mathcal{A}_l$ there exists a well-defined sequence (a_A) such that for

$$
f = \sum \{h_A a_A, A \in G_n(\Omega) \cap \mathscr{A}_l\}
$$

we get

$$
\beta_B = f/B \cdot P(B).
$$

Hence there exists $P_{n,l}: l^1 \rightarrow X_{n,l}$ such that

$$
P_{n,l}i_{n,l} = id_{X_{n,l}}
$$
 and $||P_{n,l}|| \cdot ||i_{n,l}|| \leq C$.

PROOF OF THEOREM 1, PART(b). Proposition 9 and Proposition 8(b) imply

that the hypothesis of Proposition 8(a) is satisfies. Hence $H¹[(\mathcal{F}_n)]$ is isomor**phic to** $(\Sigma H_n^1)_t$.

PROOF OF THEOREM 1(a).

Part **a. This is Theorem B (cf. [5]).**

Part **b. Combine Theorem B(b) and Proposition 8(b) to see that the hypothesis of Proposition 8(a) is satisfied.**

Part **c. Combine Proposition 9 with the fact that any complemented** subspace of l^1 is isomorphic to l^1 (cf. [3]).

REFERENCES

1. J. B. Garnett, *Bounded Analytic Functions,* Academic Press, 1981.

2. P. W. Jones, *BMO and the Banach Space Approximation problem,* Amer. J. Math. 107 (1985), 853-893.

3. J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces I,* Springer-Vedag, 1977.

4. B. Maurey, *Isomorphism entre Espaces H ~,* Acta Math. 145 (1980), 79-120.

5. P. F. X. Müller, *On subsequences of the Haar basis in H*¹(δ) and isomorphism between H¹ *spaces,* Studia Math. to appear.

6. P. F. X. Miiller, *On projections in H ~ and BMO,* preprint.

7. P. F. X. Müller, *On the span of some three valued martingale difference sequences in* L^p *and* $H¹$, in preparation.