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ABSTRACT

Let (#,) be an increasing sequence of finite fields on a probability space
(Q, #, P) where # denotes the o-algebra generated by U #,. Then H'[(%)]
is isomorphic to one of the following spaces: H'(3), (ZH))p, I'.

Introduction

In his paper [4] B. Maurey asks: “Peut on classifier les classes d’isomorphism
des espaces H'[(F,)]?” In this note we show that such a classification is indeed
possible.

More precisely we have the following

THEOREM 1. Let H'[(#,)] be infinite dimensional.

(a) If I? embeds into H'[(F,)] then H'[(#,)] is isomorphic to H'(5).

(b) If I? does not embed into H'[(#,)] and if H'[(F,)] is not isomorphic to a
complemented subspace of I' then H'[(#,)] is isomorphic to (EH,),.

(c) If I* does not embed into H'[((#,)] and if H'[(#,)] is isomorphic to a
complemented subspace of I' then H'[(F,)] is isomorphic to I'.

Part (a) of Theorem | was proven by the present author in [5]. Part (c) of
Theorem 1 holds for any infinite dimensional complemented subspace of /,
(cf. [3]). The rest of the paper is used to prove part (b). Our method of proof
permits at the same time a characterisation of the isomorphic type of given
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H'[(#,)] space in terms of the underlying measure space (§,(%,),P)
(cf. Theorem 1(a)).

The constructions given below rely on a result taken from Maurey’s paper on
H' spaces. Let’s mention two isomorphic invariants which are shared by
HY(d), (XH}); and ['.

CoROLLARY 2. (a) H'[(#,)] has an unconditional basis;
(b) H'[(#,)] is primary (i.e., for any projection P on H'(#,)] either
P(H'(#,))) or (1d — P)(H[(#,))) is isomorphic to H'[(F,))).

Proor. ad(a) By Theorem 1 it is sufficient to observe that H'(d), (ZH) ),
and /' have unconditional basis.
ad(b) H'(), (XH})y are primary [6], [' is primary; cf. [3].

The Banach space decomposition principle of Pelczynski is repeatedly
applied below. It would be very satisfying to construct an unconditional basis
in H'[(#,)] and to explicitly analyse properties of such a basis.

§0. Definitions and notations

Let (#,) be a sequence of increasing finite fields of subsets of Q. Let P be a
probability measure on (Q, #), where # = V., #,. Given fEL'[(Q, #, P)]
we write

S(f)(t):=<2 E(f| ) - E(f %;»2)“ ),

H'(F):= (fEL'(Q, Z,P)]: S(NEL'(Q, #,P)]},
BMO[(#,)]

= {fem(sz, #,P)J: sup | E(S — B(f| #_ )01 %, | 2 < oo}.

ExaMpPLES. Let % denote the algebra of subsets of (0, 1] generated by
dyadic intervals of length 2 ",

(1) H'[(£,)] will be called “the dyadic H'” and denoted by H'(d).

?2) Fp:=Loanmy MEN.

H'[(#,)] will be denoted by H.
For a different description of these spaces see, e.g., [1], [4], [S].



Vol. 59, 1987 MARTINGALE-H' SPACES 197

0. a. An algebraic basis of 2,:={f.f is #,, measurable and
E(f|#)=0}

Let /(n) denote the numbers of atoms in Z#,. Let o/, = {4,x: | =k = l(n)}
denote the collection of atoms in %,. For each n €N and k < /(n) we define
(n,) as follows:

n
K
An,k= U An+1,/'

I=nk_l+l

We assume that the enumeration of the atoms in %, | is such that there are
n,’s as above and such that:

PlA, 1) SP(Ays1j+1) form_ +1=j<n.
Now we define:
1 on An+l,j3

hayi= . P(d, 1))
Pld, 41541

E(Ani) ={Apsrj i H1=5j<nm},

Ansrj+re

i(n) ©
& :=U &MU, &=U &, E:=UE.
k=1

n=| EEA’”

The function 4, ; may also be indexed by elements of &:
hA:=th lﬁ‘A'—_{t:th(t):l}.

Some comments are in order: For j := n, the function 4, is not defined. The
atom A, ., ,, is the biggest atom in &, ,, which is a subset of 4, ;.

&,(4,,) contains all atoms of %, ,, which are subsets of A4,, with the
exception of 4, , ; . & has the following property: EE&, FESandENF #+ 0
then either E C For FCE.

Hence, for 4 C & we may talk about the maximal subsets of % with respect
to inclusion,

We use the following notations below:
For J C Q we define:
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G(J):={EE€&,E CJ, Emaximal} and G,(J):= U G|I).

16, _,()

Let & be a collection of subsets of Q. For J C Q we write:
JNZ:={D:DeZand D CJ},
g*.=U{(D:DeZ}, G, 2):=GJ)n <,
G, 2):= U Gd 2).

16, _(.2)

Theorem 1 can be rephrased in terms of the underlying measure space
(Q, (#£), P):

A4%:= N U{B:Be«,,IEN,P(B)<¢).

>0

THEOREM la. Let H'[(F,)] be infinite dimensional.
(a) P(A=)> 0 if H'[(#,)] is isomorphic to H'(J).
(b) P(4*)=0 and

1
sup —— P(E)=
Belz P(B) EEE(\& )

iff H'[(F,)] is isomorphic to (ZH)).
(c) P(4*)=0and

1
sup —— P(EY<
see P(B) EEEG ¢

iff H'[(#,)] is isomorphic to I'.
Our proof makes use of

THEOREM A (Maurey [4]). H![(#,)] is isomorphic to a complemented
subspace of H'(6) (provided (#,) is an increasing sequence of finite (!) fields).

THEOREM B ([5]). (a) P(4%) > 0 implies H'[(F,)] = H'(J).
(b) P(4*) =0 implies that I is not isomorphic to a subspace of H'[(#,)).
§1. Let’s first collect a few lemmas, concerning the behaviour of (4,).

LemMA 2. D,:={f:E(f| %)= fand E(f| #)=0}.
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(@) {hy, A€ &,} forms an algebraic basis of %,.
(b) Given ( f,))mex Where f,,€ %,,. Then

x 1/2 x 172
f(z f;) AP =2 <z f;) dP.
Q\m=n UnenEn \m=n

PROOF. (a) is clear.
(b) The proof is divided into two parts: We first find a minorization of

fu xm_nEm<mi="frzn)l/2 .

This will be followed by a proper majorization of

fﬂ\u‘m-nEm(Zf}n>”2 . =

In both parts the following sets must be studied:
Aln,k):=E, U+  UE, G \E, U -+~ UE, 1y,
Jow:={j:Apsr; NA(n k) # S},
Kopi={(n+ k) —1:jEJ,,}.

Part 1. By (a) f,+ has a well-defined expansion with respect to (h, ).
Hence there exists a well-defined sequence (a,.;) such that f,., =
2 h,,+k‘,a,,+kJ. Fix IEJn’k. We put 11 = ((n + k)[—l + 1) and

Li=(((rn+k))—1).

Then
1

(f;H—k)XA(n,k):( DI an+k,jhn+k,j>XA(n,k)-

1€ j=1

Moreover, by definition of 4, , ;:

L

( Y a, +k,jhn +k,j) * Xan k)

i=h
[/

2
=an+k,l,XA,,+“u,+ E XA,,+,‘+,.,-'(an+k,j—an+k+1,i—l'
=041

170

P(An+k+|,j—l))
P(An+k+lj)

Hence
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f vkl = 3 1ansi | P(nsesns)
Aln k)

/EJ,,J(

l

: P(A, 1 i415-1)
+ Y P, MNaiiy = Qyijor | —— =
e k1Y ki thy—1 Py k)

)
Z Y |Guriy| PAniig) + | Gniip

IEJ,._k

P(Ay 1) — Apiig, PAn s i)l

2)

z X |G sicpy) * PlAniks1p)
[EJ,_k

= E Ian+k,i| 'P(An+k+l,i)-
iEKy;

REMARK. (1) and (2) hold by an application of the triangle inequality.

Now we estimate as follows:

o 1/2 PO
f (Zf;> zf TAE DN I
U%-nEm \m=n E, k=1 + A(n,k)

; E 2 lan+k,i|P(An+k+l,i)'

k20 i€Kny

Part 2. Fixk€EN,AE A, .\ &,. We start with the following identity:

a, +k,ihn +ki * KO@\U pnEmdN A if i EK"J"
S kX QG o Emyid =
0 else.

For A given there exists exactly one i €K, ; such that 4, ,; ., is contained in
A. Lets call it i(k). Then we get:

» Apsicaritn+1 D Anssn+rik+n+1 2
(i1) N Ay ikrrigoe = (Q \ U Em) NA,
k>0 mzn

@iii) t€@Q\ U,,2, E,,) N 4 implies
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P4, l,i(k))
P(A, ks 1ik0+1)

Hence, we have the following identity:

( DA +k) K@\ U mza End 4

kz0

Btk ieft) = —

=(2 S (= Dy k)

kZ0 Ayigs144+1CA P(An+k+l,i+l)
i€Kns

) K@\U pznEn)

And this implies:

172
(Q\UmznEmNA

x 2 /
=P((m O Em)nA)( 53 |a|ﬂf‘——l)

2
m=n kZ0 ApiisrinCA P (An+k+l,i+l)
i€Kns

We are now thoroughly prepared to understand the following inequalities:

. 12
Q\UmznEw) \mzn

172
é Z ( Z Z |an+k.i|2P2(An+k+l,i)) .

A€y \Epy \ kZ0 Apyks1i+1CA
i€Knx

Combining the above estimates we get

) 112 12
S (zn)s[ ()"
Q\U S anEm U enEm
Hence we get

F(E e () e ()

© 172
<2 (2 f},,) dp.
Umm-nEm

m=n

LEMMA 3. Suppose that
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L 3 P
sup —— = 00,
pes P(B) EcBne

then there exists % C & such that:

x for |EN, E,FE4N, we get.: ENF=Z implies supphs N
supp hy =,

* SuPgey (1/P(B)) Zpepne P(E) = .

Proor. Obvious.
LEMMA 4 (cf. [1] Ch. X, Lemma 3.2). Given BC 6§, BEAB, n€EN, y <1

such that

| n
— X PE)>—,
P(B)EeBnd ( l—y

then there exists [EB N & such that
S{P(4): AEG,, B)} > yP().

ProOOF. Suppose not; then

1
— P(E)=—— P(E
P(B) EEEM ) P(B) mEN EeG?(B.d) )

—— 33 3 PE

1
P(B) i=1 m=N E€Gm +4B.#)

s 3 ( £ penr)

a contradiction!

LEMMA 5. Let o/ C % be given. 4 is as in the conclusion of Lemma 3.
(@) Forhy:=2{h,: A€ oA} we get

S¥hy)=2{h:AE o).

(b) There exists B C o such that
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F<SHha)t), tEA*
3> SHha)t), tEQ.
Proor.

2
2 — .

=SV (R2(1): A€ A N o).
k

(b) We will apply a stopping time argument: Define
h=inf{l: g N A # D}

and put 8 := o N A,. Next pick J € o/, ., N . We will decide whether or
not to put J into our collection % according to the following rule:

If S%(hg)/J > } then B remains unchanged.

If S%(hg)/J <}then B:=RB U {J}.
After having played this game with all JE &/, N &/ we consider JE o/,
N o and continue.

Taking into account that U, (o, N &#)* = of* we arrive at the desired
result.

LEMMA 6. Fix BC %. Fixn€N. Let p €N be the least integer bigger than
max( — Iny(3(1 — 27"")), —In,(42*"" — 1)), then

2 (P(4): A€G,., (I, B)} = (1 - 87 ")P(l,)

implies that G, ,(I,, B), m=n may be decomposed into (B,.),
i€{0,...,2™ — 1}, such that for m < n:
(a) 1€, j€{0, 1} we get

PU N B 10i4) Z(3+277)PU),
() Brsr2i O Bri1piv1 =9

Brv1 U Bri12i1 C By
(© PU)R™2—-4"")=P(BL)=P()2~"-2.

ProoOF. We will repeatedly apply the following remark: Given / in &,
/€N then JEG,(I, #) implies

P(J) <2-*P(]).
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Step 00. AB,,:= I, The previous remark gives us: %4, 8B,, C G,(I;, B)
such that for j€{0, 1}
(3= 277)P(I)) <P(AB¥; N Ip) < (3 + 27 P)P(1y).

Step mj. Suppose that form <n, By, . . ., Bn;are already defined. Pick
JEA,,; and find / EN such that J € «/,. Applying the remark again we may
decompose

J N Gy (Lo, B)
into B, 12 +;(J), J {0, 1} such that
(G =27 N Glsr). Lo, B) S P(B] 11 5i45())
=(G+27)PU N Gy iy oo, B)).
Taking the union we obtain the desired decomposition of 4, ;, namely:
B 12i4j = U {(Bs124/J)  JEB,,;}.

Taking the sum of the inequalities above we get:

P(B s 12i4+5) <P(Bk 1 0G4y, B))

G+2°7)
= m P(B 12 +))-
Hence
(—%:32_—,,) P(® 121/ < P(ABL,)
= Q—_‘;—) P(B2 . 121,) + 8 "B(L).
Now put
1 8 1

T (4-277)

Iterating the above procedure we obtain families (8,,;), m =n, i 2" —1
such that for j€{0, 1}

a=—,
G+279)
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. * -
BN BY i =D,
4 JR* Dk
By BE 21 C B
and

P(l) = a"P(A7 1,2i +j),

P(ly) < S"P(A% 1 130,) + (8") ( ) ﬂ") .

k=1
Our choice of p gives now the desired estimates.

LEMMA 7. Fix n €N, define p as in Lemma 6 and suppose that there exists
B E% such that
3 RE)Z(pn)8"
P(B) resnc - .
Then there exists [ EBN Y, Z,,, C4NI,j=2" — 1, m <n such that:
@) iy Hy_y = H'(F)), hj = hg,, - PUI) ™" extends to an isomorphism onto
span{hg :m<n,0=j=2"—1}.
(b) P,: H'[(F)]— H'[(F))),

oy Lhe)

|| ha,, 12

is a bounded idempotent operator onto span{hg :m <n,0=j=2" —1}.

Do

ProoF. Lemma 4 implies that there exists I C ¢ such that
Y{P(A):4€G,. I,%)}>(1—-8""P).

Hence by Lemma 6 there exists a family (4, ), m =< n having the proposition
(a), (b), (c) of Lemma 6.
Next fix JEB,;: We apply Lemma 5 to the family Jn
{Bmi12 U Bpi124+1} and denote the resulting subfamily by 2,, ;(J).
Finally we put: 2,,, = U{2,,,(J).JE®A,,;} and

hg%,, = E {hA : A C .@m’,’}.

To show that i, extends to an isomorphism we take (a,,;), m <n,i 2™ —1
arbitrary. Let’s first define (m, i) D (k, j) iff 8%, D> B¥;.
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(S| = [ |

O]

= (): a,%,,,»SZ(h%,,.)P(I)-Z)m

Ive

1 n 2 - 1/2
E f Z Qg i Xy:ﬂ-l,ﬂu RBriziv P(I)
i=1

ive

lznil< 5 arzm)uz P(1)-!

2 j=0 \mi)>n.p)

: (P(%:+ 1,21‘) + P('%:+ 1,2 + 1))

12"—1 12 2—n 8~—n
() Y
2 j=0 \m.)>(n.p) 2 4

1

e

Vg

2 am,ihm,i .
m,i

(1) — for i # j: supp S(hg,,,) N supp S(hy,,) = & (this holds because we ap-
plied Lemma 5 to the family J N {B,, 412 U B, +1.2i +1} Tather than to
Jn '@m,i);
— form # k 2,,;and 2,,; are taken from different generations of Iy;
(2) — this is property (b) of Lemnma 5;
(3) — properties (b), (c) of Lemma 6;
(4) — property (c) of Lemma 6;
(5) — definition of H}.
It is not difficult to see now that the above chain of inequalities can be
reversed (with different constants of course!).
The boundedness of P, follows from the following fact: For J € 4,,;, the
following holds:

hg,,.; = const for m < my,
[ Sitha,) s PR form 2,
J

Now we finish the proof as follows.
As pointed out in [5] P, is bounded iff there exists C ER* (independent of 1)
such that for f = Z a,, 14, the following holds:
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I/ I3vosm = Csup 2’ X ap, 27
ki) (mpCkD
To this end, fix jEN, I € o7, J(D ) E o, _,
oi=inf{m: 3i=2", IEE€Z,,,;,EDJ},
Joi=keJCu

mM

Observe that for t€1:

(f- oxz)—( L awhon— | ( 3 am,-hgm,.) P(J)-’) (0.

mzmy mz=mg

Hence fort €1

2 < BRI P BN
E(f~E(f] Z- )0 = mgm“’"’ ” h‘"'+m§m0“""p(f) K.,

IIA

2 Z a,zm ‘4'2m°—m

(mi) C (majo)

§2. Here we apply the information obtained above to the classification
problem.

ProrosiTiON 8. (a) If

P<ﬁ CJE) 0 and supL Y PE)=o

n me=n Bee P(B) EeBne

then H'[(#,)] is isomorphic to (Z H))p.
o) If

n m=n

P(A O 5)-

then there exists a subspace of H'[(#,)] which is isomorphic to I*.

Proor. Fixn €N, define pasin Lemma 6. ad(a) d, := inf{P(4): A € A, }.
Fix K,> p-n-8". We inductively choose a sequence with the following
properties: my =: 0,
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* P( U En) < %5","_]’ n ; l;
m=my,
¥ s pEyzk, f Be U &
*%k "o Or Some i»
P(B) - b, ey

Take f€ H'[(#,)] we use Lemma 2 to obtain a minorization of || f || mysy:
Define f,:= E(f| %) — E(f| Zu-)),

Jswz[(3 510" J(§, 2 )"

We minorize each integral separately (by using *, and Lemma 2):

™on+1 @©
o= U E\N U E,
k=m,, k=myy 42
o My 41 172 o« Mon+1 172
f( 2( ) lﬁ(v)xcﬂ) -3 ( mv) %
n=1 \k=my, n=1 k=my,
8n lf<k mz,lﬁ( ) XUJELE’(
] = Man+1
= f s( 3 A).
4,- k=my,

Moreover X, := (span{ f»,: fn € D, m, =m <m,,,,}) contains a comple-
mented copy of H, (by #* and Lemma 7).
All that implies that H'[(#,)] contains a complemented copy of (Z H}, )p.
On the other hand X, is a l-complemented subspace of H'[(%,)]. By
Maurey’s theorem there exist linear operators u,, v, such that the diagram

Id

Xn

X,
DN
Hl

commutes and ||, | - || v. || <c (with c independentof 7). (Observe that we
are actually factorizing through Hj for some large k,.)
Using the isomorphism H'[(#,)] = (Z X,)r we conclude that the diagram
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H'[(#)] H'[(#)]
PN
(Z Hy)
commutes, with- || u || - || v || <oo. m|

Now I apply the decomposition method, and we are done.
ad(b) We first choose 4 C & such that

* forl€N, E,FE% N o, weget EN F # 0 implies

supp kg N supp hy # & ;

** for E, = (&, N %)* we obtain P ( Nn N E,,,) > 0.
=t m=n

n

Next we observe that N, GXQ | 9)= N, N:_, E,,. Hence (by monotony)
there exists j,€ N such that

s

P( N N E,,,)gp(gy(glg)gzp( N

Il m=n

E,,,) for j = j,.

By Lemma 5 there exists 8, C G;(Q | %) such that:
SAhg)<3 onQ, and S¥he)>} onGHQ|%),
moreover
supp S¥hy) C G* (Q]9)

and

Y a}Si(hg) =S2< > a,hgj> for (a;) arbitrary.

J>jo i>Je

It’s now easy to see that (A );~; is equivalent to the unit vector basis in /2.
Indeed,

) ajhéi,-

i>J

172
- [ (2 @st))
H'[(#)] >

and



210 PAUL F. X. MULLER Isr. J. Math.

< ) a,?)ljzx/%P(ﬂﬂEm)éf@ asz(hgj))m

J>J

= ( Y af) RV P(GIQ | 9)).

i>Je

By our choice of j:

ProrosiTiON 9. If

1
sup —— P(E) < oo,
ses P(B) Ee%:m;

then H'[(#,)] is isomorphic to a complemented subspace of I'.

Proor. Take A €./, n, A arbitrary,

M>L Y P(E)
P(A) ceena

-3 3 PE)

P(A) nen Ecya)

1 %k
~P) ’EN P(G(4)).

Hence P(G},(A4)) = P(4)/4 (cf. [2], p. 820).
Given f = 2 h,a, with f€ H'[(#,)] we write G, := G,(Q)*:

12
ison=[( 25 £ ha)
neN AEGLQ)
L aM ) < 1/2
= 4Mj§1 f <n§N S AEG4§.+)(Q) hAaA)

1 M £
z— 3 X S Y ha, HGuans; \ U Gartm +j

AEGaum + ) m=n+1
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1 4M
g - 2 S < E hAaA> XGAMn +°
8M =1 neN AEGum+ Q)

Fix now n EN:

S(Z {hay: A EG,,(Q)}> X6,

= ; f S(E {ha,: A EG,,(Q)}> XGan *

z%§fs<z{hAaA:AeGn(g)n &i,}).

Define now
Xoi=({Zha,  AEG, QN &} la)-

We have shown up to now that

H'[(#,)] is isomorphic to (2 X,,,,> .
nt r
It remains to show that X, ; is uniformly complemented in /'. To do so, we
observe that
in,I: Xn,! _>1],
f=(f/B)-P(B), BEG,(Q) N o))

is an isomorphism (by Lemma 2(b)).
Moreover, by Lemma 2(a), for any sequence 5, B € G,(Q) N o, there exists
a well-defined sequence (a,) such that for

f=2{has, AEG,(Q) N o/}
we get
B85 = f/B -P(B).
Hence there exists P, ;: ' — X, such that
Pojing=1idy,and || Py |l - [ i | =C.

PROOF OF THEOREM 1, PART(b). Proposition 9 and Proposition 8(b) imply
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that the hypothesis of Proposition 8(a) is satisfies. Hence H'[(#,)] is isomor-
phic to (£ H)),.

PROOF OF THEOREM 1(a).

Part a. This is Theorem B (cf. [5]).

Part b. Combine Theorem B(b) and Proposition 8(b) to see that the
hypothesis of Proposition 8(a) is satisfied.

Part ¢. Combine Proposition 9 with the fact that any complemented
subspace of /' is isomorphic to /! (cf. [3]).
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