CLASSIFICATION OF THE ISOMORPHIC TYPES OF MARTINGALE-H¹ SPACES

BY

PAUL F. X. MÜLLER Johannes Kepler Universität Linz, Institute für Mathematik, A-4040 Linz, Austria

ABSTRACT

Let (\mathcal{F}_n) be an increasing sequence of finite fields on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ where \mathcal{F} denotes the σ -algebra generated by $\bigcup \mathcal{F}_n$. Then $H^1[(\mathcal{F}_n)]$ is isomorphic to one of the following spaces: $H^1(\delta), (\Sigma H_n^1)_l, l^1$.

Introduction

In his paper [4] B. Maurey asks: "Peut on classifier les classes d'isomorphism des espaces $H^1[(F_n)]$?" In this note we show that such a classification is indeed possible.

More precisely we have the following

THEOREM 1. Let $H^1[(\mathcal{F}_n)]$ be infinite dimensional:

(a) If l^2 embeds into $H^1[(\mathscr{F}_n)]$ then $H^1[(\mathscr{F}_n)]$ is isomorphic to $H^1(\delta)$.

(b) If l^2 does not embed into $H^1[(\mathscr{F}_n)]$ and if $H^1[(\mathscr{F}_n)]$ is not isomorphic to a complemented subspace of l^1 then $H^1[(\mathscr{F}_n)]$ is isomorphic to $(\Sigma H_n^1)_{l'}$.

(c) If l^2 does not embed into $H^1[(\mathscr{F}_n)]$ and if $H^1[(\mathscr{F}_n)]$ is isomorphic to a complemented subspace of l^1 then $H^1[(\mathscr{F}_n)]$ is isomorphic to l^1 .

Part (a) of Theorem 1 was proven by the present author in [5]. Part (c) of Theorem 1 holds for any infinite dimensional complemented subspace of l_1 (cf. [3]). The rest of the paper is used to prove part (b). Our method of proof permits at the same time a characterisation of the isomorphic type of given

Received November 27, 1986 and in revised form March 19, 1987

 $H^{1}[(\mathcal{F}_{n})]$ space in terms of the underlying measure space $(\Omega, (\mathcal{F}_{n}), \mathbf{P})$ (cf. Theorem 1(a)).

The constructions given below rely on a result taken from Maurey's paper on H^1 spaces. Let's mention two isomorphic invariants which are shared by $H^1(\delta)$, $(\Sigma H_n^1)_{l^1}$ and l^1 .

COROLLARY 2. (a) $H^1[(\mathscr{F}_n)]$ has an unconditional basis;

(b) $H^1[(\mathscr{F}_n)]$ is primary (i.e., for any projection P on $H^1[(\mathscr{F}_n)]$ either $P(H^1[(\mathscr{F}_n)])$ or $(\mathrm{Id} - P)(H[(\mathscr{F}_n)])$ is isomorphic to $H^1[(\mathscr{F}_n)])$.

PROOF. ad(a) By Theorem 1 it is sufficient to observe that $H^1(\delta)$, $(\Sigma H_n^1)_{l'}$ and l' have unconditional basis.

ad(b) $H^{1}(\delta)$, $(\Sigma H_{n}^{1})_{l'}$ are primary [6], l^{1} is primary; cf. [3].

The Banach space decomposition principle of Pelczynski is repeatedly applied below. It would be very satisfying to construct an unconditional basis in $H^1[(\mathcal{F}_n)]$ and to explicitly analyse properties of such a basis.

§0. Definitions and notations

Let (\mathscr{F}_n) be a sequence of increasing finite fields of subsets of Ω . Let **P** be a probability measure on (Ω, \mathscr{F}) , where $\mathscr{F} = \bigvee_{n=1}^{\infty} \mathscr{F}_n$. Given $f \in L^1[(\Omega, \mathscr{F}, \mathbf{P})]$ we write

$$S(f)(t) := \left(\sum \left(\mathbf{E}(f \mid \mathscr{F}_n) - \mathbf{E}(f \mid \mathscr{F}_{n-1}) \right)^2 \right)^{1/2} (t),$$
$$H^1[(\mathscr{F}_n)] := \left\{ f \in L^1[(\Omega, \mathscr{F}, \mathbf{P})] : S(f) \in L^1[(\Omega, \mathscr{F}, \mathbf{P})] \right\},$$

 $BMO[(\mathcal{F}_n)]$

$$:= \left\{ f \in L^2[(\Omega, \mathscr{F}, \mathbf{P})]: \sup_n \| \mathbf{E}((f - \mathbf{E}(f \mid \mathscr{F}_{n-1}))^2 \mid \mathscr{F}_n \|_{\infty}^{1/2} < \infty \right\}.$$

EXAMPLES. Let \mathscr{L}_n denote the algebra of subsets of (0, 1] generated by dyadic intervals of length 2^{-n} .

(1) $H^1[(\mathcal{L}_n)]$ will be called "the dyadic H^1 " and denoted by $H^1(\delta)$.

(2) $\mathscr{F}_m := \mathscr{L}_{\max(n,m)}, m \in \mathbb{N}.$

 $H^1[(\mathscr{F}_n)]$ will be denoted by H^1_n .

For a different description of these spaces see, e.g., [1], [4], [5].

0. a. An algebraic basis of $\mathcal{D}_n := \{f: f \text{ is } \mathcal{F}_{n+1} \text{ measurable and } \mathbf{E}(f \mid \mathcal{F}_n) = 0\}$

Let l(n) denote the numbers of atoms in \mathscr{F}_n . Let $\mathscr{A}_n = \{A_{n,k} : 1 \leq k \leq l(n)\}$ denote the collection of atoms in \mathscr{F}_n . For each $n \in \mathbb{N}$ and $k \leq l(n)$ we define (n_k) as follows:

$$A_{n,k} = \bigcup_{l=n_{k-1}+1}^{n_k} A_{n+1,l}.$$

We assume that the enumeration of the atoms in \mathscr{F}_{n+1} is such that there are n_k 's as above and such that:

 $\mathbf{P}(A_{n+1,j}) \leq \mathbf{P}(A_{n+1,j+1})$ for $n_{k-1} + 1 \leq j < n_k$.

Now we define:

$$h_{n,j} := \begin{cases} 1 & \text{on } A_{n+1,j}, \\ -\frac{\mathbf{P}(A_{n+1,j})}{\mathbf{P}(A_{n+1,j+1})} & \text{on } A_{n+1,j+1}. \end{cases}$$
$$\mathscr{E}_n(A_{n,k}) := \{A_{n+1,j} : n_{k-1} + 1 \le j < n_k\},$$
$$\mathscr{E}_n := \bigcup_{k=1}^{l(n)} \mathscr{E}_n(A_{n,k}), \quad \mathscr{E} := \bigcup_{n=1}^{\infty} \mathscr{E}_n, \quad E_n := \bigcup_{E \in \mathscr{E}_n} E.$$

The function $h_{n,i}$ may also be indexed by elements of \mathscr{E} :

$$h_A := h_{n,j}$$
 iff $A = \{t : h_{n,j}(t) = 1\}.$

Some comments are in order: For $j := n_k$ the function $h_{n,j}$ is not defined. The atom A_{n+1,n_k} is the biggest atom in \mathscr{F}_{n+1} which is a subset of $A_{n,k}$.

 $\mathscr{E}_n(A_{n,k})$ contains all atoms of \mathscr{F}_{n+1} which are subsets of $A_{n,k}$ with the exception of A_{n+1,n_k} . \mathscr{E} has the following property: $E \in \mathscr{E}$, $F \in \mathscr{E}$ and $E \cap F \neq 0$ then either $E \subset F$ or $F \subset E$.

Hence, for $\mathscr{G} \subset \mathscr{E}$ we may talk about the maximal subsets of \mathscr{G} with respect to inclusion.

We use the following notations below: For $J \subset \Omega$ we define: $G_1(J) := \{E \in \mathscr{E}, E \subseteq J, E \text{ maximal}\} \text{ and } G_n(J) := \bigcup_{I \in G_{n-1}(J)} G_1(I).$

Let \mathcal{D} be a collection of subsets of Ω . For $J \subset \Omega$ we write:

$$J \cap \mathcal{Q} := \{D : D \in \mathcal{Q} \text{ and } D \subset J\},\$$
$$\mathcal{Q}^* := \bigcup \{D : D \in \mathcal{Q}\}, \quad G_1(J, \mathcal{Q}) := G_1(J) \cap \mathcal{Q},\$$
$$G_n(J, \mathcal{Q}) := \bigcup_{I \in G_{n-1}(J, \mathcal{Q})} G_1(I, \mathcal{Q}).$$

Theorem 1 can be rephrased in terms of the underlying measure space $(\Omega, (\mathcal{F}_n), \mathbf{P})$:

$$A^{\times} := \bigcap_{\varepsilon>0} \bigcup \{B : B \in \mathscr{A}_{l}, l \in \mathbb{N}, \mathbf{P}(B) \leq \varepsilon \}.$$

THEOREM 1a. Let $H^1[(\mathscr{F}_n)]$ be infinite dimensional: (a) $P(A^{\infty}) > 0$ iff $H^1[(\mathscr{F}_n)]$ is isomorphic to $H^1(\delta)$. (b) $P(A^{\infty}) = 0$ and

$$\sup_{B\in \mathscr{S}}\frac{1}{\mathbf{P}(B)}\sum_{E\in B\cap \mathscr{S}}\mathbf{P}(E)=\infty$$

iff $H^1[(\mathscr{F}_n)]$ is isomorphic to $(\Sigma H_n^1)_{l^1}$. (c) $\mathbf{P}(A^{\infty}) = 0$ and

$$\sup_{B\in\mathscr{S}}\frac{1}{\mathbf{P}(B)}\sum_{E\in\mathscr{B}\cap\mathscr{S}}\mathbf{P}(E)<\infty$$

iff $H^1[(\mathscr{F}_n)]$ is isomorphic to l^1 .

Our proof makes use of

THEOREM A (Maurey [4]). $H^1[(\mathscr{F}_n)]$ is isomorphic to a complemented subspace of $H^1(\delta)$ (provided (\mathscr{F}_n) is an increasing sequence of finite (!) fields).

THEOREM B ([5]). (a) $\mathbf{P}(A^{\infty}) > 0$ implies $H^1[(\mathscr{F}_n)] \cong H^1(\delta)$. (b) $\mathbf{P}(A^{\infty}) = 0$ implies that l^2 is not isomorphic to a subspace of $H^1[(\mathscr{F}_n)]$.

§1. Let's first collect a few lemmas, concerning the behaviour of (h_{nj}) .

LEMMA 2. $\mathcal{D}_n := \{ f : E(f \mid \mathcal{F}_{n+1}) = f \text{ and } E(f \mid \mathcal{F}_n) = 0 \}.$

- (a) $\{h_A, A \in \mathscr{E}_n\}$ forms an algebraic basis of \mathscr{Q}_n .
- (b) Given $(f_m)_{m \in \mathbb{N}}$ where $f_m \in \mathcal{G}_m$. Then

$$\int_{\Omega} \left(\sum_{m=n}^{\infty} f_m^2\right)^{1/2} d\mathbf{P} \leq 2 \int_{\bigcup_{m=n}^{\infty} E_m} \left(\sum_{m=n}^{\infty} f_m^2\right)^{1/2} d\mathbf{P}.$$

PROOF. (a) is clear.

(b) The proof is divided into two parts: We first find a minorization of

$$\int_{\bigcup_{m=n}^{\infty} E_m} \left(\sum_{m=n}^{\infty} f_m^2\right)^{1/2}.$$

This will be followed by a proper majorization of

$$\int_{\Omega\setminus \bigcup_{m=n}^{\infty} E_m} \left(\sum f_m^2\right)^{1/2}.$$

In both parts the following sets must be studied:

$$\Delta(n,k) := E_n \cup \cdots \cup E_{n+k} \setminus E_n \cup \cdots \cup E_{n+k-1},$$
$$J_{n,k} := \{ j : A_{n+k,j} \cap \Delta(n,k) \neq \emptyset \},$$
$$K_{n,k} := \{ (n+k)_j - 1 : j \in J_{n,k} \}.$$

Part 1. By (a) f_{n+k} has a well-defined expansion with respect to $(h_{n+k,j})$. Hence there exists a well-defined sequence $(a_{n+k,j})$ such that $f_{n+k} = \sum h_{n+k,j}a_{n+k,j}$. Fix $l \in J_{n,k}$. We put $l_1 := ((n+k)_{l-1}+1)$ and

$$l_2 := (((n + k)_l) - 1).$$

Then

$$(f_{n+k})\chi_{\Delta(n,k)} = \left(\sum_{l\in J_{n,k}}\sum_{j=l_1}^{l_2}a_{n+k,j}h_{n+k,j}\right)\chi_{\Delta(n,k)}$$

Moreover, by definition of $h_{n+k,j}$:

$$\left(\sum_{j=l_{1}}^{l_{2}}a_{n+k,j}h_{n+k,j}\right)\cdot\chi_{\Delta(n,k)}$$

= $a_{n+k,l_{1}}\chi_{A_{n+k+1,l_{1}}} + \sum_{j=l_{1}+1}^{l_{2}}\chi_{A_{n+k+1,j_{1}}}\cdot\left(a_{n+k,j}-a_{n+k+1,j-1}\cdot\frac{P(A_{n+k+1,j-1})}{P(A_{n+k+1,j})}\right).$

Hence

$$\int_{\Delta(n,k)} |f_{n+k}| = \sum_{l \in J_{n,k}} |a_{n+k,l_1}| P(A_{n+k+1,l_1})$$

$$+ \sum_{j=l_1+1}^{l_2} P(A_{n+k+1,j}) |a_{n+k,j} - a_{n+k,j-1}| \cdot \frac{P(A_{n+k+1,j-1})}{P(A_{n+k+1,j})}$$

$$\stackrel{(1)}{\geq} \sum_{l \in J_{n,k}} |a_{n+k,l_1}| \cdot P(A_{n+k,l_1}) + |a_{n+k,l_2}$$

$$\cdot P(A_{n+k+1,l_2}) - a_{n+k,l_1} \cdot P(A_{n+k+1,l_1}) |$$

$$\stackrel{(2)}{\geq} \sum_{l \in J_{n,k}} |a_{n+k,l_2}| \cdot P(A_{n+k+1,l_2})$$

$$= \sum_{i \in K_{ni}} |a_{n+k,i}| \cdot P(A_{n+k+1,i}).$$

REMARK. (1) and (2) hold by an application of the triangle inequality. Now we estimate as follows:

$$\int_{\bigcup_{m=n}^{\infty} E_m} \left(\sum_{m=n}^{\infty} f_m^2\right)^{1/2} \ge \int_{E_n} |f_n| + \sum_{k=1}^{\infty} \int_{\Delta(n,k)} |f_{n+k}|$$
$$\ge \sum_{k\geq 0}^{\infty} \sum_{i\in K_{n,k}} |a_{n+k,i}| \mathbf{P}(A_{n+k+1,i}).$$

Part 2. Fix $k \in \mathbb{N}$, $A \in \mathcal{A}_{n+1} \setminus \mathcal{E}_n$. We start with the following identity:

$$f_{n+k}\chi_{(\Omega\setminus\cup_{m>n}E_m)\cap A} = \begin{cases} a_{n+k,i}h_{n+k,i}\cdot\chi_{(\Omega\setminus\cup_{m>n}E_m)\cap A} & \text{if } i\in K_{n,k}, \\ 0 & \text{else.} \end{cases}$$

For A given there exists exactly one $i \in K_{n,k}$ such that $A_{n+k+1,i+1}$ is contained in A. Lets call it i(k). Then we get:

(i)
$$A_{n+k+1,i(k)+1} \supset A_{n+(k+1)+1,i(k+1)+1} \supset \cdots$$

(ii)
$$\bigcap_{k>0} A_{n+k+1,i(k)+1} = \left(\Omega \setminus \bigcup_{m \ge n} E_m\right) \cap A,$$

(iii) $t \in (\Omega \setminus \bigcup_{m \ge n} E_m) \cap A$ implies

$$h_{n+k,i(k)}(t) = -\frac{\mathbf{P}(A_{n+k+1,i(k)})}{\mathbf{P}(A_{n+k+1,i(k)+1})}.$$

Hence, we have the following identity:

$$\left(\sum_{k\geq 0} f_{n+k}\right)\chi_{(\Omega\setminus\bigcup_{m\geq n} E_m)\cap A}$$

= $\left(\sum_{\substack{k\geq 0\\i\in K_{n,k}}}\sum_{a_{n+k+1,i+1}\subset A} (-1)a_{n+k,i}\cdot\frac{\mathbf{P}(A_{n+k+1,i})}{\mathbf{P}(A_{n+k+1,i+1})}\right)\chi_{(\Omega\setminus\bigcup_{m\geq n} E_m)}$

And this implies:

$$\int_{(\Omega \setminus \bigcup_{m \ge n} E_m) \cap A} \left(\sum f_m^2 \right)^{1/2} = \mathbf{P} \left(\left(\Omega \setminus \bigcup_{m \ge n}^{\infty} E_m \right) \cap A \right) \left(\sum_{\substack{k \ge 0 \ i \in K_{n,k}}} \sum_{A_n+k+1,i+1 \subset A} |a_{n+k,i}|^2 \cdot \frac{\mathbf{P}^2(A_{n+k+1,i+1})}{\mathbf{P}^2(A_{n+k+1,i+1})} \right)^{1/2}.$$

We are now thoroughly prepared to understand the following inequalities:

$$\int_{(\Omega \setminus \bigcup_{m \ge n} E_m)} \left(\sum_{m \ge n} f_m^2 \right)^{1/2} \\ \leq \sum_{A \in \mathcal{A}_{n+1} \setminus \mathcal{S}_n} \left(\sum_{\substack{k \ge 0 \\ i \in K_{n,k}}} \sum_{A_{n+k+1,i+1} \subset A} |a_{n+k,i}|^2 \mathbf{P}^2(A_{n+k+1,i}) \right)^{1/2}.$$

Combining the above estimates we get

$$\int_{\Omega\setminus \bigcup_{m=n}^{\infty} E_m} \left(\sum f_m^2 \right)^{1/2} \leq \int_{\bigcup_{m=n}^{\infty} E_m} \left(\sum f_m^2 \right)^{1/2}.$$

Hence we get

$$\int \left(\sum_{m=n}^{\infty} f_m^2\right)^{1/2} d\mathbf{P} = \int_{\Omega \setminus \bigcup_{m=n}^{\infty} E_m} \left(\sum_{m=n}^{\infty} f_m^2\right)^{1/2} d\mathbf{P} + \int_{\bigcup_{m=n}^{\infty} E_m} \left(\sum_{m=n}^{\infty} f_m^2\right)^{1/2} d\mathbf{P}$$
$$\leq 2 \int_{\bigcup_{m=n}^{\infty} E_m} \left(\sum_{m=n}^{\infty} f_m^2\right)^{1/2} d\mathbf{P}.$$

LEMMA 3. Suppose that

$$\sup_{B\in\mathscr{S}}\frac{1}{\mathbf{P}(B)}\sum_{E\in B\cap\mathscr{S}}\mathbf{P}(B)=\infty,$$

then there exists $\mathcal{G} \subset \mathcal{E}$ such that:

* for $l \in \mathbb{N}$, $E, F \in \mathcal{G} \cap \mathcal{A}_l$ we get: $E \cap F = \emptyset$ implies $\operatorname{supp} h_E \cap \operatorname{supp} h_F = \emptyset$,

* $\sup_{B \in \mathscr{G}} (1/\mathbf{P}(B)) \sum_{E \in B \cap \mathscr{G}} \mathbf{P}(E) = \infty.$

PROOF. Obvious.

LEMMA 4 (cf. [1] Ch. X, Lemma 3.2). Given $\mathcal{B} \subset \mathcal{E}$, $B \in \mathcal{B}$, $n \in \mathbb{N}$, $\gamma < 1$ such that

$$\frac{1}{\mathbf{P}(B)}\sum_{E\in B\cap\mathscr{A}}\mathbf{P}(E) > \frac{n}{1-\gamma},$$

then there exists $I \in B \cap \mathcal{B}$ such that

$$\Sigma\{\mathbf{P}(A): A \in G_n(I, \mathscr{B})\} > \gamma \mathbf{P}(I).$$

PROOF. Suppose not; then

$$\frac{1}{\mathbf{P}(B)} \sum_{E \in B \cap \mathscr{A}} \mathbf{P}(E) = \frac{1}{\mathbf{P}(B)} \sum_{m \in \mathbf{N}} \sum_{E \in G_m(B, \mathscr{A})} \mathbf{P}(E)$$
$$= \frac{1}{\mathbf{P}(B)} \sum_{i=1}^n \sum_{m=\mathbf{N}} \sum_{E \in G_{mn+i}(B, \mathscr{A})} \mathbf{P}(E)$$
$$\leq \frac{1}{\mathbf{P}(B)} \sum_{i=1}^n \left(\sum_{m \in \mathbf{N}} \mathbf{P}(B) \gamma^m \right)$$
$$\leq \frac{n}{1-\gamma},$$

a contradiction!

LEMMA 5. Let $\mathcal{A} \subset \mathcal{G}$ be given. \mathcal{G} is as in the conclusion of Lemma 3. (a) For $h_{\mathcal{A}} := \Sigma\{h_A : A \in \mathcal{A}\}$ we get

$$S^{2}(h_{\mathscr{A}}) = \Sigma\{h_{A}^{2} : A \in \mathscr{A}\}.$$

(b) There exists $\mathcal{B} \subset \mathcal{A}$ such that

$$\frac{1}{2} < S^2(h_{\mathscr{B}})(t), \qquad t \in \mathscr{A}^*;$$

$$\frac{3}{2} > S^2(h_{\mathscr{B}})(t), \qquad t \in \Omega.$$

PROOF.

PROOF.
(a)
$$S^{2}(h_{\mathscr{A}}) = \sum_{k} \left(\sum \{ h_{A} : A \in \mathscr{A} \cap \mathscr{A}_{k} \} \right)^{2}$$

$$= \sum_{k} \sum \{ h_{A}^{2}(t) : A \in \mathscr{A} \cap \mathscr{A}_{k} \}.$$

(b) We will apply a stopping time argument: Define

$$l_0 = \inf\{l : \mathscr{A} \cap \mathscr{A}_l \neq \emptyset\}$$

and put $\mathscr{B} := \mathscr{A} \cap \mathscr{A}_{h}$. Next pick $J \in \mathscr{A}_{h+1} \cap \mathscr{A}$. We will decide whether or not to put J into our collection \mathcal{B} according to the following rule:

If $S^2(h_{\mathscr{B}})/J > \frac{1}{2}$ then \mathscr{B} remains unchanged.

If $S^2(h_{\mathscr{B}})/J < \frac{1}{2}$ then $\mathscr{B} := \mathscr{B} \cup \{J\}$.

After having played this game with all $J \in \mathscr{A}_{h+1} \cap \mathscr{A}$ we consider $J \in \mathscr{A}_{h+2}$ $\cap \mathscr{A}$ and continue.

Taking into account that $\bigcup_{i=1}^{\infty} (\mathscr{A}_i \cap \mathscr{A})^* = \mathscr{A}^*$ we arrive at the desired result.

LEMMA 6. Fix $\mathscr{B} \subset \mathscr{G}$. Fix $n \in \mathbb{N}$. Let $p \in \mathbb{N}$ be the least integer bigger than $\max(-\ln_2(\frac{1}{2}(1-2^{-1/n})), -\ln_2(\frac{1}{2}(2^{+1/n}-1))), then$

$$\sum \left\{ \mathbf{P}(A) : A \in G_{p \cdot n}(I_0, \mathscr{B}) \right\} \ge (1 - 8^{-n}) \mathbf{P}(I_0)$$

implies that $G_{m,p}(I_0, \mathcal{B}), m \leq n$ may be decomposed into $(\mathcal{B}_{mi}),$ $i \in \{0, \ldots, 2^m - 1\}$, such that for $m \leq n$:

(a) $I \in \mathcal{B}_{mi}, j \in \{0, 1\}$ we get

 $\mathbf{P}(I \cap \mathscr{B}_{m+1,2i+i}^*) \leq (\frac{1}{2} + 2^{-p})\mathbf{P}(I),$

 $\mathscr{B}_{m+1,2i}^{*} \cap \mathscr{B}_{m+1,2i+1}^{*} = \emptyset$ (b)

$$\mathscr{B}_{m+1,2i}^{*} \cup \mathscr{B}_{m+1,2i+1}^{*} \subset \mathscr{B}_{m+1}^{*},$$

(c) $\mathbf{P}(I_0)(2^{-m}/2 - 4^{-n}) \leq \mathbf{P}(\mathscr{B}_{m,i}^*) \leq \mathbf{P}(I_0)2^{-m} \cdot 2.$

PROOF. We will repeatedly apply the following remark: Given I in \mathcal{A}_{I} , $l \in \mathbb{N}$ then $J \in G_p(I, \mathscr{B})$ implies

$$\mathbf{P}(J) \leq 2^{-p} \mathbf{P}(I).$$

Step 00. $\mathscr{B}_{0,0} := I_0$. The previous remark gives us: $\mathscr{B}_{1,0}, \mathscr{B}_{1,1} \subset G_p(I_0, \mathscr{B})$ such that for $j \in \{0, 1\}$

$$(\frac{1}{2}-2^{-p})\mathbf{P}(I_0) < \mathbf{P}(\mathscr{B}^{\boldsymbol{*}}_{1,j} \cap I_0) < (\frac{1}{2}+2^{-p})\mathbf{P}(I_0).$$

Step mj. Suppose that for m < n, $\mathscr{B}_{0,0}, \ldots, \mathscr{B}_{mj}$ are already defined. Pick $J \in \mathscr{B}_{mj}$ and find $l \in \mathbb{N}$ such that $J \in \mathscr{A}_l$. Applying the remark again we may decompose

$$J\cap G_{mp+p}(I_0,\mathscr{B})$$

into $\mathscr{B}_{m+1,2i+j}(J), j \in \{0, 1\}$ such that

$$(\frac{1}{2}-2^{-p})\mathbf{P}(J\cap G^*_{(m+1)\cdot p}(I_0,\mathscr{B})) \leq \mathbf{P}(\mathscr{B}^*_{m+1,2i+j}(J))$$
$$\leq (\frac{1}{2}+2^{-p})\mathbf{P}(J\cap G^*_{(m+1)\cdot p}(I_0,\mathscr{B})).$$

Taking the union we obtain the desired decomposition of $\mathcal{B}_{m,i}$, namely:

$$\mathscr{B}_{m+1,2i+j} := \bigcup \{\mathscr{B}_{m+1,2i+j}(J) : J \in \mathscr{B}_{m,i}\}.$$

Taking the sum of the inequalities above we get:

$$\frac{1}{(\frac{1}{2}+2^{-p})} \mathbf{P}(\mathscr{B}_{m+1,2i+j}^{*}) < \mathbf{P}(\mathscr{B}_{m+1}^{*} \cap G_{(m+1)p}^{*}(I_{0},\mathscr{B}))$$

$$\leq \frac{1}{(\frac{1}{2}-2^{-p})} \mathbf{P}(\mathscr{B}_{m+1,2i+j}^{*}).$$

Hence

$$\frac{1}{(\frac{1}{2}+2^{-p})} \mathbf{P}(\mathscr{B}_{m+1,2i+j}^{*}) < \mathbf{P}(\mathscr{B}_{m,i}^{*})$$

$$\leq \frac{1}{(\frac{1}{2}-2^{-p})} \mathbf{P}(\mathscr{B}_{m+1,2i+j}^{*}) + 8^{-n} \mathbf{P}(I_{0}).$$

Now put

$$\alpha = \frac{1}{(\frac{1}{2} + 2^{-p})}, \quad \beta = \frac{1}{(\frac{1}{2} - 2^{-p})}$$

Iterating the above procedure we obtain families $(\mathscr{B}_{m,i})$, $m \leq n$, $i \leq 2^m - 1$ such that for $j \in \{0, 1\}$

$$\mathcal{B}_{m+1,2i}^{*} \cap \mathcal{B}_{m+1,2i+1}^{*} = \emptyset,$$

$$\mathcal{B}_{m+1,2i}^{*} \cup \mathcal{B}_{m+1,2i+1}^{*} \subset \mathcal{B}_{m,i}^{*}$$

and

$$\mathbf{P}(I_0) \ge \alpha^m \mathbf{P}(\mathscr{B}_{m+1,2i+j}^*),$$

$$\mathbf{P}(I_0) \le \beta^m \mathbf{P}(\mathscr{B}_{m+1,2i+j}^*) + (8^{-n}) \left(\sum_{k=1}^m \beta^k\right).$$

Our choice of p gives now the desired estimates.

LEMMA 7. Fix $n \in \mathbb{N}$, define p as in Lemma 6 and suppose that there exists $B \in \mathcal{G}$ such that

$$\frac{1}{P(B)}\sum_{E\in B\cap G}\mathbf{P}(E)\geq (p\cdot n)\cdot 8^n.$$

Then there exists $I \in B \cap \mathcal{G}$, $\mathcal{Q}_{m,i} \subset \mathcal{G} \cap I$, $j \leq 2^m - 1$, m < n such that:

(a) $i_n: H_{n-1}^1 \to H^1[(\mathscr{F}_k)], h_{mj} \to h_{\mathscr{Q}_{mj}} \cdot \mathbb{P}(I)^{-1}$ extends to an isomorphism onto span $\{h_{\mathscr{Q}_{mj}}: m < n, 0 \leq j \leq 2^m - 1\}.$

(b) $P_n: H^1[(\mathscr{F}_k)] \to H^1[(\mathscr{F}_k)],$

$$f \to \sum_{(mj)} \frac{\langle f, h_{\mathcal{Q}_{mj}} \rangle}{\| h_{\mathcal{Q}_{mj}} \|_2^2} \cdot h_{\mathcal{Q}_{mj}}$$

is a bounded idempotent operator onto span{ $h_{\mathcal{Q}_{mi}}: m < n, 0 \leq j \leq 2^{m} - 1$ }.

PROOF. Lemma 4 implies that there exists $I \subset \mathcal{G}$ such that

$$\sum \{\mathbf{P}(A): A \in G_{n \cdot p}(I, \mathscr{G})\} > (1 - 8^{-n})P(I).$$

Hence by Lemma 6 there exists a family $(\mathscr{B}_{m,i})$, $m \leq n$ having the proposition (a), (b), (c) of Lemma 6.

Next fix $J \in \mathscr{B}_{m,i}$: We apply Lemma 5 to the family $J \cap \{\mathscr{B}_{m+1,2i} \cup \mathscr{B}_{m+1,2i+1}\}$ and denote the resulting subfamily by $\mathscr{D}_{m,i}(J)$.

Finally we put: $\mathscr{D}_{m,i} = \bigcup \{ \mathscr{D}_{m,i}(J) : J \in \mathscr{B}_{m,i} \}$ and

$$h_{\mathcal{D}_{m,i}} = \sum \{h_A : A \subset \mathcal{D}_{m,i}\}.$$

To show that i_n extends to an isomorphism we take $(a_{m,i}), m < n, i \le 2^m - 1$ arbitrary. Let's first define $(m, i) \supset (k, j)$ iff $\mathscr{B}_{m,i}^* \supset \mathscr{B}_{k,j}^*$.

$$\left\| i_n \left(\sum a_{m,i} h_{m,i} \right) \right\| = \left\| \sum a_{m,i}, h_{\mathscr{D}_{m,i}} P(I)^{-1} \right\|$$

$$\stackrel{(1)}{=} \int \left(\sum a_{m,i}^2 S^2(h_{\mathscr{D}_{m,i}}) P(I)^{-2} \right)^{1/2}$$

$$\stackrel{(2)}{=} \frac{1}{2} \int \left(\sum_{i=1}^n a_{m,i}^2 \chi_{\mathscr{B}_{m+1,2i}^* \cup \mathscr{B}_{m+1,2i+1}^*} \cdot P(I)^{-1} \right)^{1/2}$$

$$\stackrel{(3)}{=} \frac{1}{2} \sum_{j=0}^{2^n - 1} \left(\sum_{(m,i) \supset (n,j)} a_{m,j}^2 \right)^{1/2} P(I)^{-1}$$

$$\cdot \left(P(\mathscr{B}_{n+1,2i}^*) + P(\mathscr{B}_{n+1,2i+1}^*) \right)$$

$$\stackrel{(4)}{=} \frac{1}{2} \sum_{j=0}^{2^n - 1} \left(\sum_{(m,i) \supset (n,j)} a_{m,j}^2 \right)^{1/2} \left(\frac{2^{-n}}{2} - \frac{8^{-n}}{4} \right)$$

$$\stackrel{(5)}{=} \frac{1}{8} \left\| \sum_{m,i} a_{m,i} h_{m,i} \right\| .$$

- (1) for $i \neq j$: supp $S(h_{\mathscr{D}_{m,i}}) \cap supp S(h_{\mathscr{D}_{m,j}}) = \emptyset$ (this holds because we applied Lemma 5 to the family $J \cap \{\mathscr{B}_{m+1,2i} \cup \mathscr{B}_{m+1,2i+1}\}$ rather than to $J \cap \mathscr{B}_{m,i}$);
 - for $m \neq k \mathcal{D}_{m,i}$ and $\mathcal{D}_{m,j}$ are taken from different generations of I_0 ;
- (2) this is property (b) of Lemma 5;
- (3) properties (b), (c) of Lemma 6;
- (4) property (c) of Lemma 6;
- (5) definition of H_n^1 .

It is not difficult to see now that the above chain of inequalities can be reversed (with different constants of course!).

The boundedness of P_n follows from the following fact: For $J \in \mathscr{B}_{m_{0,0}}$ the following holds:

$$h_{\mathscr{D}_{mj}/J} = \text{const} \qquad \text{for } m < m_0,$$

$$\int_J S^2(h_{\mathscr{D}_{mj}}) \leq \mathbf{P}(J) 2^{-m+m_0} \quad \text{for } m \geq m_0.$$

Now we finish the proof as follows.

As pointed out in [5] P_n is bounded iff there exists $C \in \mathbf{R}^+$ (independent of n) such that for $f = \sum a_{mj} h_{\mathcal{D}_{mj}}$ the following holds:

Vol. 59, 1987

$$\| f \|_{BMO[(\mathscr{F}_n)]}^2 \leq C \sup_{(k,i)} 2^i \sum_{(m,j) \in (k,i)} a_{mj}^2 2^{-j}.$$

To this end, fix $j \in \mathbb{N}$, $I \in \mathcal{A}_j$, $J(\supset I) \in \mathcal{A}_{j-1}$,

$$m_0 := \inf\{m : \exists i \leq 2^m, \exists E \in \mathscr{G}_{m,i}, E \supset J\},\$$

$$j_0:=k \Leftrightarrow J \subset \mathscr{Q}^*_{m_0j}.$$

Observe that for $t \in I$:

$$(f - \mathbf{E}(f \mid \mathscr{F}_{j-1}))(t) = \left(\sum_{m \ge m_0} a_{mi} h_{\mathscr{G}_{mi}} - \int_J \left(\sum_{m \ge m_0} a_{mi} h_{\mathscr{G}_{mi}}\right) \mathbf{P}(J)^{-1}\right)(t).$$

Hence for $t \in I$:

$$\mathbf{E}((f - \mathbf{E}(f \mid \mathscr{F}_{j-1}))^2(\mathscr{F}_j))(t) \leq \sum_{m \geq m_0} a_{mi}^2 \frac{1}{\mathbf{P}(I)} \int_I h_{\mathscr{G}_{mi}}^2 + \sum_{m \geq m_0} a_{mi} \frac{1}{\mathbf{P}(J)} \int_J h_{\mathscr{G}_{mi}}^2$$
$$\leq 2 \sum_{(mi) \in (m_0 j_0)} a_{mi}^2 \cdot 4 \cdot 2^{m_0 - m}.$$

§2. Here we apply the information obtained above to the classification problem.

Proposition 8. (a) If

$$\mathbf{P}\left(\begin{array}{cc} \bigcap_{n}^{\infty} & \bigcup_{m=n}^{\infty} & E_{m} \end{array}\right) = 0 \quad and \quad \sup_{B \in \mathscr{B}} \frac{1}{\mathbf{P}(B)} \sum_{E \in B \cap \mathscr{B}} \mathbf{P}(E) = \infty$$

then $H^1[(\mathscr{F}_n)]$ is isomorphic to $(\Sigma H_n^1)_{l'}$. (b) If

$$\mathbf{P}\left(\begin{array}{cc} \bigcap_{n}^{\infty} & \bigcup_{m=n}^{\infty} E_{m} \right) > 0$$

then there exists a subspace of $H^1[(\mathscr{F}_n)]$ which is isomorphic to l^2 .

PROOF. Fix $n \in \mathbb{N}$, define p as in Lemma 6. ad(a) $\delta_n := \inf\{\mathbb{P}(A) : A \in \mathscr{A}_n\}$. Fix $K_n > p \cdot n \cdot 8^n$. We inductively choose a sequence with the following properties: $m_0 =: 0$,

*
$$\mathbf{P}\left(\bigcup_{m=m_n}^{\infty}E_n\right) < \frac{1}{8}\delta_{m_{n-1}}, \quad n \ge 1;$$

**
$$\frac{1}{\mathbf{P}(B)} \sum_{j=m_{n-1}}^{m_n} \sum_{E \in B \cap \mathscr{E}_j} \mathbf{P}(E) \ge K_n, \text{ for some } B \in \bigcup_{j=m_{n-1}}^{m_n} \mathscr{E}_j.$$

Take $f \in H^1[(\mathscr{F}_n)]$ we use Lemma 2 to obtain a minorization of $|| f ||_{H^1[(\mathscr{F}_n)]}$: Define $f_m := \mathbb{E}(f | \mathscr{F}_m) - E(f | \mathscr{F}_{m-1}),$

$$2\int S(f) \ge \int \left(\sum_{n=1}^{\infty} \sum_{k=m_{2n}}^{m_{2n+1}} |f_k|^2\right)^{1/2} + \int \left(\sum_{n=1}^{\infty} \sum_{n=m_{2n-1}}^{m_{2n}} |f_k|^2\right)^{1/2}$$

We minorize each integral separately (by using *, and Lemma 2):

$$c_{n} := \bigcup_{k=m_{2n}}^{m_{2n+1}} E_{k} \setminus \bigcup_{k=m_{2n+2}}^{\infty} E_{k},$$

$$\int \left(\sum_{n=1}^{\infty} \left(\sum_{k=m_{2n}}^{m_{2n+1}} |f_{k}|^{2}\right) \chi_{c_{n}}\right)^{1/2} = \sum_{n=1}^{\infty} \int \left(\sum_{k=m_{2n}}^{m_{2n+1}} |f_{k}|^{2}\right)^{1/2} \cdot \chi_{c_{n}}$$

$$> \frac{7}{8} \sum_{n=1}^{\infty} \int \left(\sum_{k=m_{2n}}^{m_{2n+1}} |f_{k}|^{2}\right)^{1/2} \cdot \chi_{\cup \frac{m_{2n+1}}{k=m_{2n}}} E_{k}$$

$$\ge \frac{1}{4} \sum_{n=1}^{\infty} \int \left(S\left(\sum_{k=m_{2n}}^{m_{2n+1}} f_{k}\right)\right).$$

Moreover $X_n := (\text{span}\{f_m : f_m \in \mathcal{D}_m, m_n \leq m < m_{m+1}\})$ contains a complemented copy of H_n^1 (by ** and Lemma 7).

All that implies that $H^1[(\mathscr{F}_n)]$ contains a complemented copy of $(\Sigma H_n^1)_{l'}$.

On the other hand X_n is a 1-complemented subspace of $H^1[(\mathscr{F}_n)]$. By Maurey's theorem there exist linear operators u_n , v_n such that the diagram

commutes and $||u_n|| \cdot ||v_n|| < c$ (with c independent of n). (Observe that we are actually factorizing through $H_{k_n}^1$ for some large k_n .)

Using the isomorphism $H^1[(\mathscr{F}_n)] \cong (\Sigma X_n)_{l'}$ we conclude that the diagram

commutes, with $\| u \| \cdot \| v \| < \infty$.

Now I apply the decomposition method, and we are done. ad(b) We first choose $\mathscr{G} \subset \mathscr{E}$ such that

* for
$$l \in \mathbb{N}$$
, $E, F \in \mathscr{G} \cap \mathscr{A}_l$ we get $E \cap F \neq 0$ implies
supp $h_E \cap$ supp $h_F \neq \emptyset$;

** for
$$\tilde{E}_n = (\mathscr{E}_n \cap \mathscr{G})^*$$
 we obtain $\mathbf{P}\left(\bigcap_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \tilde{E}_m\right) > 0.$

Next we observe that $\bigcap_j G_j^*(\Omega \mid \mathscr{G}) = \bigcap_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \tilde{E}_m$. Hence (by monotony) there exists $j_0 \in \mathbb{N}$ such that

$$\mathbf{P}\left(\bigcap_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \tilde{E}_{m}\right) \leq \mathbf{P}(\mathscr{G}_{j}^{*}(\Omega \mid \mathscr{G})) \leq 2\mathbf{P}\left(\bigcap_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \tilde{E}_{m}\right) \text{ for } j \geq j_{0}.$$

By Lemma 5 there exists $\mathscr{B}_j \subset G_j(\Omega \mid \mathscr{G})$ such that:

$$S^2(h_{\mathscr{B}_j}) < \frac{3}{2}$$
 on Ω , and $S^2(h_{\mathscr{B}_j}) > \frac{1}{2}$ on $G_j^*(\Omega \mid \mathscr{G})$;

moreover

$$\operatorname{supp} S^2(h_{\mathscr{B}_i}) \subset G^*_{j-1}(\Omega \mid \mathscr{G})$$

and

$$\sum_{j>j_0} a_j^2 S^2(h_{\mathscr{B}_j}) = S^2\left(\sum_{j>j_0} a_j h_{\mathscr{B}_j}\right) \quad \text{for } (a_j) \text{ arbitrary}.$$

It's now easy to see that $(h_{\mathscr{A}_j})_{j>j_0}$ is equivalent to the unit vector basis in l^2 . Indeed,

$$\left\|\sum_{j>j_0}a_jh_{\mathscr{B}_j}\right\|_{H^1[(\mathscr{F}_n)]} = \int \left(\sum_{j>j_0}a_j^2S^2(h_{\mathscr{B}_j})\right)^{1/2}$$

and

$$\left(\sum_{j>j_0} a_j^2\right)^{1/2} \sqrt{\frac{1}{2}} \mathbf{P}(\bigcap \cap \tilde{E}_m) \leq \int \left(\sum a_j^2 S^2(h_{\mathscr{B}_j})\right)^{1/2}$$
$$\leq \left(\sum_{j>j_0} a_j^2\right)^{1/2} \sqrt{\frac{5}{2}} \mathbf{P}(G_{j_0}^*(\Omega \mid \mathscr{G})).$$

By our choice of j_0 :

$$\frac{\sqrt{3}}{2} \leq \frac{\sqrt{\frac{3}{2}}}{\sqrt{2}} \frac{\mathbf{P}(G_{j_0}^*(\Omega \mid \mathscr{G}))}{\mathbf{P}\left(\bigcap_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \tilde{E}_n\right)} \leq \sqrt{3}.$$

Proposition 9. If

$$\sup_{B\in\mathscr{S}}\frac{1}{\mathbf{P}(B)}\sum_{E\in B\cap\mathscr{S}}\mathbf{P}(E)<\infty,$$

then $H^{1}[(\mathcal{F}_{n})]$ is isomorphic to a complemented subspace of l^{1} .

PROOF. Take $A \in \mathcal{A}_n$, n, A arbitrary,

$$M > \frac{1}{\mathbf{P}(A)} \sum_{E \in \mathscr{S} \cap A} \mathbf{P}(E)$$
$$= \frac{1}{\mathbf{P}(A)} \sum_{n \in \mathbb{N}} \sum_{E \in G_n(A)} \mathbf{P}(E)$$
$$= \frac{1}{\mathbf{P}(A)} \sum_{n \in \mathbb{N}} \mathbf{P}(G_n^*(A)).$$

Hence $\mathbf{P}(G_{4M}^*(A)) \leq \mathbf{P}(A)/4$ (cf. [2], p. 820). Given $f = \sum h_A a_A$ with $f \in H^1[(\mathscr{F}_n)]$ we write $G_n := G_n(\Omega)^*$:

$$\| S(f) \|_{1} = \int \left(\sum_{n \in \mathbb{N}} S^{2} \left(\sum_{A \in G_{n}(\Omega)} h_{A} a_{A} \right) \right)^{1/2}$$

$$\geq \frac{1}{4M} \sum_{j=1}^{4M} \int \left(\sum_{n \in \mathbb{N}} S^{2} \left(\sum_{A \in G_{4Mn+j}(\Omega)} h_{A} a_{A} \right)^{1/2} \right)^{1/2}$$

$$\geq \frac{1}{4M} \sum_{j=1}^{4M} \sum_{n \in \mathbb{N}} \int S \left(\sum_{A \in G_{4Mn+j}(\Omega)} h_{A} a_{A} \right) \chi_{G_{4Mn+j}} \setminus \bigcup_{m=n+1}^{\infty} G_{4Mm+j}$$

$$\geq \frac{1}{8M} \sum_{j=1}^{4M} \sum_{n \in \mathbb{N}} \int S\left(\sum_{A \in G_{4Mn+j}(\Omega)} h_A a_A\right) \chi_{G_{4Mn+j}}.$$

Fix now $n \in \mathbb{N}$:

$$\int S\left(\sum \{h_A a_A : A \in G_n(\Omega)\}\right) \chi_{G_n}$$

= $\sum_l \int S\left(\sum \{h_A a_A : A \in G_n(\Omega)\}\right) \chi_{(G_n(\Omega) \cap \mathscr{A}_l)}$
$$\geq \frac{1}{2} \sum_l \int S\left(\sum \{h_A a_A : A \in G_n(\Omega) \cap \mathscr{A}_l\}\right).$$

Define now

$$X_{n,l}:=(\{\Sigma h_A a_A: A\in G_n(\Omega)\cap \mathscr{A}_l\}, \| \|_{H^1}).$$

We have shown up to now that

$$H^{1}[(\mathscr{F}_{n})]$$
 is isomorphic to $\left(\sum_{n,l} X_{n,l}\right)_{l^{1}}$

It remains to show that $X_{n,l}$ is uniformly complemented in l^{1} . To do so, we observe that

$$i_{n,l} \colon X_{n,l} \to l^1,$$

$$f \to ((f/B) \cdot \mathbf{P}(B), B \in G_n(\Omega) \cap \mathscr{A}_l)$$

...

is an isomorphism (by Lemma 2(b)).

Moreover, by Lemma 2(a), for any sequence β_B , $B \in G_n(\Omega) \cap \mathscr{A}_l$ there exists a well-defined sequence (a_A) such that for

$$f = \sum \{h_A a_A, A \in G_n(\Omega) \cap \mathscr{A}_l\}$$

we get

$$\beta_B = f/B \cdot \mathbf{P}(B).$$

Hence there exists $P_{n,l}: l^1 \rightarrow X_{n,l}$ such that

$$P_{n,l}i_{n,l} = \mathrm{id}_{X_{n,l}}$$
 and $||P_{n,l}|| \cdot ||i_{n,l}|| \leq C.$

PROOF OF THEOREM 1, PART(b). Proposition 9 and Proposition 8(b) imply

that the hypothesis of Proposition 8(a) is satisfies. Hence $H^1[(\mathscr{F}_n)]$ is isomorphic to $(\Sigma H_n^1)_{l^1}$.

PROOF OF THEOREM 1(a).

Part a. This is Theorem B (cf. [5]).

Part b. Combine Theorem B(b) and Proposition 8(b) to see that the hypothesis of Proposition 8(a) is satisfied.

Part c. Combine Proposition 9 with the fact that any complemented subspace of l^1 is isomorphic to l^1 (cf. [3]).

References

1. J. B. Garnett, Bounded Analytic Functions, Academic Press, 1981.

2. P. W. Jones, BMO and the Banach Space Approximation problem, Amer. J. Math. 107 (1985), 853-893.

3. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, 1977.

4. B. Maurey, Isomorphism entre Espaces H¹, Acta Math. 145 (1980), 79-120.

5. P. F. X. Müller, On subsequences of the Haar basis in $H^1(\delta)$ and isomorphism between H^1 spaces, Studia Math. to appear.

6. P. F. X. Müller, On projections in H^1 and BMO, preprint.

7. P. F. X. Müller, On the span of some three valued martingale difference sequences in L^p and H^1 , in preparation.