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ABSTRACT 

Let (~'.) be an increasing sequence of finite fields on a probability space 
(~, ~', P) where ~" denotes the a-algebra generated by tO ~'.. Then H~[(.~.)] 
is isomorphic to one of the following spaces: Hl(t~), (ZH. I h', P- 

Introduction 

In his paper [4] B. Maurey asks: "Peut on classifier les classes d'isomorphism 

des espaces H~[(Fn)]? " In this note we show that such a classification is indeed 

possible. 

More precisely we have the following 

THEOREM 1. Let HI[(~ . ) ]  be infinite dimensional: 
(a) I f  l 2 embeds into HI[(.~.)] then H~[(~r.)] is isomorphic to H~(~). 
(b) I f F  does not embed into HI[ (~ ) ]  and i fHl[(~.)]  is not isomorphic to a 

complemented subspace o f  l I then Hl[(~v.)] is isomorphic to (EH. ~ )/'. 

(c) I f  l 2 does not embed into H~[(~.)] and i f  Hl[(~r.)] is isomorphic to a 
complemented subspace o f  l I then HI[(~.)] is isomorphic to l ~. 

Part (a) of  Theorem 1 was proven by the present author in [5]. Part (c) of  

Theorem 1 holds for any infinite dimensional complemented subspace of lL 

(cf. [3]). The rest of  the paper is used to prove part (b). Our method of proof 

permits at the same time a characterisation of the isomorphic type of given 
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196 PAUL F. X, MOLLER Isr. J. Math. 

H~[(~)]  space in terms of the underlying measure space ( f~ , (~) ,P)  
(cf. Theorem l(a)). 

The constructions given below rely on a result taken from Maurey's paper on 
H 1 spaces. Let's mention two isomorphic invariants which are shared by 
Hl(t~), (ZH~)t' and l 1. 

COROLLARY 2. (a) HI[(~,)] has an unconditional basis; 
(b) Ht[(.~,)] is primary (i.e., for any projection P on Ht[(~,) l  either 

P(H ' [ (~ ) ] )  or (Id - P) (H[(~) ] )  is isomorphic to Hll(~r~)]). 

PROOF. ad(a) By Theorem 1 it is sufficient to observe that Ht(~), (Y.H~)t' 
and l I have unconditional basis. 

ad(b) HI(~), (YH, ~ )l' are primary [6], l ~ is primary, cf. [3]. 

The Banach space decomposition principle of Pelczynski is repeatedly 
applied below. It would be very satisfying to construct an unconditional basis 
in HI [ (~ ) ]  and to explicitly analyse properties of such a basis. 

§0. Definitions and notations 

Let (o~) be a sequence of increasing finite fields of subsets of fL Let P be a 
probability measure on (f~, ~ ) ,  where ~ = V~=I ,~v. Given f E  L I[(~, ~' ,  P)] 
we write 

S(f)( t)  (t), 

H~[(~)]  : = ( fEL~[( fL ~ ,  P)] :S(f)EL~[(~,  ~ ,  P)]}, 

BMO[(~r~)] 

: =  / e)]: sup II. E ( f f -  r ( f l  ~-1))21~ II 
t n J 

EXAMPLES. Let &e, denote the algebra of subsets of (0, 1] generated by 
dyadic intervals of length 2-"  

(1) H l [ (~ ) ]  will be called "the dyadic H I" and denoted by Hl(t~). 

(2) ~m:=:~?maxt,,m), m E N .  

H l [ ( ~ ) ]  will be denoted by H~ l . 
For a different description of these spaces see, e.g., [ 1 ], [4], [5]. 
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O.a. An algebraic basis of  ~ . : =  { f : f  is ;~+l measurable and 
E ( f ]  ~ . )  = 0} 

Let l(n) denote the numbers of atoms in ~. .  Let ~/. = {A.,k : 1 _--< k _-< l(n)} 
denote the collection of atoms in ~ .  For each n E N and k < l(n) we define 

(nk) as follows: 

?k, 
A n ,  k = U An + 1,1" 

I = n k _ l + l  

We assume that the enumeration of the atoms in ~ +~ is such that there are 

nk'S as above and such that: 

P(An+lj)<P(An+lj+t) for nk-i + 1 < j < n k .  

Now we define: 

1_ on An + Id, 

h. j:= P(A.+Ij) onA.+la+t.  
P(A.+Ij+0 

8.(A.,k) := {A.+lj: nk-l + 1 <=j < nk}, 

l(n) 

8.:= U 8.(A..k), 8"= U 8., E. := U 
k = I n = I EE8 n 

E. 

The function h.j  may also be indexed by elements of 8: 

hA:=h.j iffA = { t : h . j ( t ) =  1). 

Some comments are in order: F o r j  :=  nk the function h,j is not defined. The 

atom A, + 1.,, is the biggest atom in ~r  +1 which is a subset of  A,.k. 
8,(A,.k) contains all atoms of ~r+~ which are subsets of  A,.k with the 

exception ofA, + ~.,~. 8 has the following property: E E g. F E 8 and E A F ~: 0 

then either E C F or F c E. 

Hence. for ~ c 8 we may talk about the maximal subsets of  ~ with respect 

to inclusion. 

We use the following notations below: 

For J c f l  we define: 



198 PAUL F. X. MI)LLER Isr. J. Math. 

G~(J):={EE#,EC_J, Emaximal} and G,(J)'--- U Gl(I). 
I ~ G  n _ l(J) 

Let ~ be a collection of subsets of f/. For J C f~ we write: 

J n 3 .= { D ' D ~ 3  andD c J}, 

~* '= U { D : D ~ } ,  G~(J, 3 ) :=G~(J )Ag ,  

G,(J, ~ ) ' =  U G~(I, 3). 
l E G  n _ l(J,ff') 

Theorem 1 
(f~, (o~),  P): 

can be rephrased in terms of the underlying measure space 

A ~ :  = n U{B:BE~II, I~N,P(B)<e}. 
g>0 

THEOREM la. Let H~[(~)] be infinite dimensional: 
(a) P(A ~) > 0 iff n~[(~)] is isomorphic to H~(O). 
(b) P ( a  ~) = 0 and 

1 
E P(E)=  oo sup p - ~  

BE8 E E B  A 8 

i f f  nl[(i~n)] is isomorphic to (EH~)t'. 
(c) P(A~) = 0 and 

1 
E P(E) < oo sup 

n~8 P(B) z~nn8 

iff Hl[(.,~,)] is isomorphic to P. 

Our proof makes use of 

THEOREM A (Maurey [4]). H~[(3~,)] is isomorphic to a complemented 
subspace of H~(~) (provided ( ~ )  is an increasing sequence of finite (!)fields). 

THEOREM B ([5]). (a) P(A ~) > 0 implies Hl[(~)]  --~ n~(t~). 
(b) P(A ®) = 0 implies that 12 is not isomorphic to a subspace of Ht[(~)]. 

§1. Let's first collect a few lemmas, concerning the behaviour of (hnj). 

LEMMA 2. ~n "----- { f :  E(f[  ~+1) = fandE( f [  ~ )  = 0}. 
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(a) {hA, A ~ ~,  } forms an algebraic basis of  ~ . .  
(b) Given (f,.).,~N where fro ~ ~, . .  Then 

PROOF. (a) is clear. 
(b) The proof is divided into two parts: We first find a minorization of  

This will be followed by a proper majorization of 

In both parts the following sets must be studied: 

A ( n , k ) : = E .  U . . .  U E.+k \ E .  U . . .  U E.+k-z, 

J.,,  "= ( j : A . + k j  fq A(n, k) ~ ~ } ,  

Part 1. 
Hence there exists a well-defined sequence (an+k,j) such 
Z h.÷kja.+kj. Fix l~-J~,k. We put l~ :=  ((n + k)/_~ + 1) and 

Then 

[] 

K.,k: = ((n + k ) j -  1 : jEJ . .k}.  

By (a)f .  +k has a well-defined expansion with respect to (h. +kj). 

that f .  +k = 

12 :=  (((n + k)~) - 1). 

Moreover, by definition of h,, +kj: 

(j~-t, a.+kjh.+kj)"XA(.,k, 

i, 
---- an +k.l, Za..,+ls ' "Jr- 

j=lj+l 

P(A.+k+~j-!)I. 
Za..k+, J'(a.+kJ -- an+k+ l . i - i  P (A .+k+ , . i )  / 

Hence 
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IL+kl= la.+k,t, IP(A.+~+la.) 
(n,k) IEJ..k 

l 2 

+ 
)=11+1 

P(A.+k +lj)la.+kj -- a.+ka-I I 

O) 
e 2  

IEJ.,~ 
la. +j,. I "P(A.+k,i,) + la.+k,t~ 

P(A.+k+tj-O 
P(A. +k + I j) 

• P ( A .  + k + 1,1,) - a .  + ~,t." P ( A .  + k + Ia,) I 

(2) 
Y. la.+k,t21"P(A.+k+l,t) 

IEJ.,k 

= Y~ l a . + k . i l ' P ( A . + k + l . i ) .  
i~K,a 

REMARK• (1) and (2) hold by an application of the triangle inequality. 

Now we estimate as follows: 

: u  ( ) I / 2 : E  fA 

>-- ,~ 5'. la.+k,~ IP(A.+k+,.i). 
k~O iEK.s, 

Part 2. Fix k E N, A ~ .d .  + I \ g . .  We start with the following identity: 

fn+k)~( f l \u .>.E. )nA ={ an+k'ihn+k'i'X(fl\°'>'E~)nAO else.ifiEK"k' 

For A given there exists exactly one i E g . ,  k such that A. + k + t,~ + t is contained in 
A. Lets call it i(k). Then we get: 

(i) 

(ii) 

An +k + I,i(k)+ 1 ~ An +(k + I)+ l,i(k + i)+ 1 ~ " ' ". 

n An+k+,.i(k)+, =(~-~ \  U Em) NA, 
k>O m>n 

(iii) t E ( ~ \  Urn>=. Era) n A implies 
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h~ +~,,k)(t) = -- 
P(A~ + k + 1,,k)) 

P(A~ +k + 1,i(k)+ 1) 

Hence, we have the following identity: 

k>_-0 A,+k+l,,+lCA 
i ~ K,,.k 

( -  l )an + k,i 
P(A~+k+l i) "~ 
- - - - " ' "  -.] Z(n\ u.~.E.). 

P(hn+k +l,i+O/ 

And this implies: 

m ~ n  k>=O A,+k+Li+ICA 

p2(An +k+~) " ~u2 

p2(An+k + l,i+ l)l " 

We are now thoroughly prepared to unders tand the following inequalities: 

< z ( x z  
A E.~/n + t\Sm k_-_.0 An+k+l,j+l CA 

i ~ K,,k 

a 2 2 ~ 1/2 
[ n + k , i [  e (hn+k+l,i)] • 

Combining the above estimates we get 

Hence we get 

m=. . d P = L \ u ~ . - . e . . ~ - n f 2 m ,  d P + L ~ . - . e . (  d P  

LEMMA 3. Suppose that 
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1 
sup Y, P(B) = or, 
Be, P(B) E~Bn* 

then there ex&ts (~ c g such that: 

. f o r  I E N ,  E, F E ~ N s l ~  we get: 

supp hF = ~ , 

* supsE~ (I/P(B)) ZE~Bn~ P(E) = oo. 

E N F =  ~ implies s u p p h E n  

PROOF. O b v i o u s .  

LEMMA 4 (cf. [1] Ch. X, Lemma 3.2). Given ~ c  g,  B ~ ,  n ~ N ,  y <  1 

such that 

1 n 
E P(E) > - -  

P(B) rEBna 1 -- y '  

then there exists I E B O ~ such that 

E{P(A) • A EG, ( I ,  ~)}  > yP(I). 

PROOF. Suppose not; then 

1 
Y, P ( E ) -  

P(B) e~nna 

1 
E ~ P(E) 

P(B) m~N E~C.(B.a) 

1 n 
= Y, Y, E P ( E )  

P(B) i=, m=N ee6.,+,(B,~) 

P ( B ) ~  'm 
P(B) i= 1 N 

n < _ _  

1 - y  

a contradiction! 

LEMMA 5. Let ,d C ~ be given. ~ is as in the conclusion o f  Lemma 3. 

(a) For h.~ :=  Z{hA " A ~ ,~¢) we get 

S2(h.~) = Z{h 2 : A ~ ~¢}. 

(b) There exists ~ c s t  such that 
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PROOF. 

½ < S2(ha)(t), t E M*; 

> S2(h~)(t), t E f~. 

S2(h~) = Y~ (ha:A E M  n Mk} 
(a) 

= X Y. e d  n d k } .  
k 

(b) We will apply a stopping time argument: Define 

l0 = inf(l:  ~ n Mr ~ Z~ } 

and put ~ := d n Mr0. Next pick JE,~fto+l n d .  We will decide whether or 

not to put J into our collection ~ according to the following rule: 

If SZ(h~)/J > ½ then ~ remains unchanged. 

If S2(h~)/J < ½ then ~ := ~ U {J). 

After having played this game with all J~,ffto+l n d we consider JEMto+2 

n M and continue. 

Taking into account that U3=1 ( a ' / n  ~ ) *  = s/* we arrive at the desired 

result. 

LEMMA 6. Fix ~ C fa. Fix n E N. Let p ~ N be the least integer bigger than 
max( - ln2(½(1 - 2-1/,)), _ 1n2(½(2 + 1/, _ 1))), then 

Y~ {P(A):A ~Gp.,(lo, ~)} > (1 - 8-")P(I0) 

implies that G,,.p(Io,~), m < n  may be decomposed into (Ytmi), 
i E { 0 , . . . ,  2" -- 1 }, such that for m < n: 

(a) I E ~ m , , j E { O ,  1} weget 

P(I n ~*+l,2~+j) ----< (½ + 2-P)P(I), 

( b )  * = ~m+l,2i n l~m*+¿,2i+ I 

~m+l,2i U ~"~m*+l,2i+l C ~m*+l, 

(c) P(10)(2 - " / 2  - 4 -") < P(~*,,)  < P(I0)2 - " .  2. 

PROOF. We will repeatedly apply the following remark: Given I in Mr, 

l ~ N  then JEGp(I ,  8 )  implies 

P(J) < 2-PP(1). 
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Step 00. 8o,o :=  Io. The previous remark gives us: ~1,o, 8t , t  C G,(Io, ~8) 
such that fo r j~{O,  1} 

(½ - 2 -P)P(Io) < P ( 8 ~  n Io) < (½ + 2 - P)P(Io). 

Step mj. Suppose that for m < n, 8o.o . . . .  , 8 , , j  are already defined. Pick 
J E 8 , , j  and find l E N such that J ~ air. Applying the remark again we may 

decompose 

J n Gmp+p(Io, ~) 

into 8, .+L2~+j(J), jE{0, 1} such that 

(~ - 2-P)P(J f3 G('m+,).p(lo, ~))  =< P(~*+,.2,+j(J)) 

< (½ + 2 -P)P(J n Gi.,+o.p(Io, 8)). 

Taking the union we obtain the desired decomposit ion of 8re.i, namely: 

8m+l,2i+j := U {~m+l,2i+j(J) : J ~#$m,i}. 

Taking the sum of the inequalities above we get: 

1 

(½ + 2-P)  
P ( 8 *  + 1,2i +j) < P ( 8 *  +1 N G(m + l)p(Io, 8 ) )  

1 < 

= (½ - 2 - P )  
P ( 8 *  + 1,2i +A" 

Hence 

(½ + 2 -9) 
P(8~* + ,,2, +j) < P ( 8 *  ,) 

1 
< .  

-- (½ - 2 - P )  
P ( 8 *  + ,,2i +j) + 8 -" P(Io). 

Now put 

1 1 

a = ( ½ + 2 _ O ,  p ( ½ - 2 - P )  

Iterating the above procedure we obtain families (Sin,i) , m = n ,  < i = < 2 m --1 

such that for j E (0, l } 
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and 

'~m*+l,2i ~ ~m*+l,2i+l = J~, 

fl~m*+l,2i U ~m*+l,2i+l C ~m*,i 

P ( I o )  > a m p ( , ~ .  ÷ t,2i +~), 

P(I0) --< ,tim P(M* + ~,2~ +j) + (8 -")  
k 

Our  choice of  p gives now the desired estimates.  

LEMMA 7. Fix n E N ,  define p as in L e m m a  6 and suppose that there exists 

B E (a such that 

1 
Y, P ( E ) > ( p . n ) . 8  ". 

P(B)  E~B n G 

Then there exists I ~ B  A f#, ~ ' j  c (a N I , j  < 2"  - 1, m < n such that: 

(a) i, : H  t _ ~ --- H~[(~k)], h' j  -" h~,j. P(I)  -L extends to an isomorphism onto 

span{he,j  : m < n, 0 < j  < 2"  - 1}. 

(b) P,  : H~[(~k)]--" H ' [ (~k) ] ,  

f__,. ]~ ( f ,  h ~ ) . h ~ ,  
2 II 112 

is a bounded idempotent operator onto span{h~.~ : m < n, 0 < j  < 2"  - 1 }. 

PROOF. L e m m a  4 implies that  there exists I C fa such that  

{P(A) : A ~ G n . , ( l ,  @)} > (1 - 8 -n)P(I).  

Hence by L e m m a  6 there exists a family ( ~ ' , i ) ,  m _-< n having the proposi t ion  
(a), (b), (c) of  L e m m a  6. 

Next  fix J ~ ' , i :  We apply L e m m a  5 to the family J A  

{ ~ ' +  1,2i t) ~0~rn + 1,2i+ 1} and denote  the resulting subfamily by ~ ' , i ( J ) .  

Finally we put: ~ ' , i  = U(~m,i(J):JE~',i} and 

= {hA :A c 

To show that  in extends to an i somorph i sm we take (am,i), m < n, i < 2 m - 1 

arbitrary. Let 's first define (m,  i) D ( k , j )  iff ~ * i  D ~ , i -  
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;( _ 2 - 1  

2 ~=1 

12~1(  2 ~1/2,] 
= - -  ~ am,j | p( i ) - I  

2 j~O (m,i)D(n,j) 

• (P (~ .*+  1,2i) + P(~'~*+ 1,2i + l))  

) 
2 j=o (m,i)D(n,j) 

o) 1 
- ~,, amihmi • 
8 m,i ' ' 

(1) m for i ~ j :  supp S(h~,.,) tq supp S(h~ , , )  = ~ (this holds because we ap- 

plied Lemma 5 to the family J N { ~m + 1,2~ U Mm + 1.2; + ~ } rather than to 

J tq ~m,i); 
m for m 4: k @m,i and ~m,j are taken from different generations of/0; 

(2) m this is property (b) of  Lemma 5; 

(3) ~ properties (b), (c) of  Lemma 6; 
(4) - -  property (c) of  Lemma 6; 

(5) - -  definition of HI. 

It is not difficult to see now that the above chain of inequalities can be 
reversed (with different constants of  course!). 

The boundedness of P, follows from the following fact: For J ~ , ~ 0  the 

following holds: 

h~./j = const for m < mo, 

f . iS2(h  ) < P ( J ) 2 - ' + m 0  f o r m  > mo. 

Now we finish the proof as follows. 
As pointed out in [5] P. is bounded iffthere exists C ~ R ÷ (independent of  n) 

such that for f =  ~ a,,,jhu,~ the following holds: 
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II f 2 2 2 -J. IIB otl .)j --< C s u p  2 i ~ a,,,j 
(k, i)  ( m d ) c ( k ,  i) 

To this end, fixj EN,  I~s l j ,  J( D I)E,~lj_~, 

m0"=in f{m"  9i < 2  m, 3 E ~ m , i , E  D J ) ,  

Observe that for t E I: 

( f -  E ( f  I .~j-l))(t) 

Hence for t E I: 

J0 :=  k *=~ J C ~*oJ" 

--(,,~,, a,,~h~.,-:j(,.~,.oa,.,h~.,)P(J)-~)(t) • 

E ( ( f -  E ( f ]  ~ _  0)2(~))(t) =< f, Y. a~, + 2 a,,, h~, 
=~,,,0 P(I) J i  ~" P ~  " m m ----too 

207 

< 2 ~ a2i .4.2"0-". 
(mi) c ( mo)o) 

§2. 
problem. 

PROPOSITION 8. (a) I f  

P Em =0 and sup Y~ P(E) - -oc  
. ,,=, BesP(B)eenn~ 

then H~[(~.)] is isomorphic to (Z Ill, ):. 
(b) If  

~ m ~ n  

Here we apply the information obtained above to the classification 

then there exists a subspace of Hl[(~.)] which is isomorphic to 12. 

PROOF. Fix n ~ N, define p as in Lemma 6. ad(a) 5, : = inf(P(A) : A E M,  }. 
Fix K, > p .  n .  8". We inductively choose a sequence with the following 

properties: m0 =:  0, 
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• P E.  < !d > 8 m._,, n = 1; 

m =  n 

mn mn 

** Y. ~ P(E)>=Kn, for s o m e B E  U gj. 
P(B) j=,n._, Zen•sj J=m._ l 

Take fEHl[(~n)]  we use Lemma 2 to obtain a minorization of II flln'tt~j: 
Define f,n :=  E( f ]  ~m) -- E( f ]  "~m-O, 

S(f)>= Y. IAl: + 2 Ifkl 2 
n l k=m2. n = l  n=m2.- i  

We minorize each integral separately (by using. ,  and Lemma 2): 

m 2 n + l  

c . : =  U Ek \ U Ek, 
k=rn2n k=m2n+2 

f f 
;C )" 7 o~ m~÷, Ifk I 2 "gu ..... E~ 

n = l  k 2. 

Moreover X.:=(span{fm:fmE~m, m. < m  <mm+l}) contains a comple- 
mented copy of H. ~ (by ** and Lemma 7). 

All that implies that Hl[(~r.)] contains a complemented copy of (Z H. ~ )t'. 
On the other hand it'. is a 1-complemented subspace of Hl [ (~) ] .  By 

Maurey's theorem there exist linear operators u., v. such that the diagram 

Id 

x. 

H l 

commutes and ]] u. l] " II v. [] < c (with c independentof n). (Observe that we 
are actually factorizing through H~. for some large k..) 

Using the isomorphism Hl[(~.~.)] --~ (Z X.)l, we conclude that the diagram 
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Id 
H~[(~)] , H~[(~)] 

commutes, w i t h '  II u II • II v II < oo. 

Now I apply the decomposition method, and we are done. 
ad(b) We first choose fa c 8 such that 

• for l E N, E, F E f# 0 ~¢t we get E f3 F v~ 0 implies 

supp hE 0 supp hF ~ (~ ; 

• * f o r / ~ . = ( 8 .  N f a ) * w e o b t a i n P (  .=1 (~ m=. ~ /~, .)>0. 

[] 

and 

moreover 

P(.=,f~ ,.=.f~/~")--<P(~(~Ifa))--<2P( .=1 ~ ,.=. f~ /~m)forj->-Jo. 

By Lemma 5 there exists ~j C Gj(D[ fg) such that: 

S2(h~,) < ~ on fl, and S2(h~) > ½ on G~:(~) 15); 

supp S2(h~,,) c G*_,(f~ [ 5) 

J>JoY" a~S2(h~,)= S2 (j~>jo ajh~j) for (aj) arbitrary. 

It's now easy to see that (ha,)j>jo is equivalent to the unit vector basis in l 2. 

Indeed, 

J>Jo H (.~n) ] J o 

and 

Next we observe that Aj G*(fl [ f9) = Nn = 1 A,. =. m- Hence (by monotony) 
there exists Jo E N such that 
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2~1/2 / 2 2 '~ 1/2 
(j~>joa) ) v/~ P( ('] Nff'm) ~ 5 ~ajS  (h'aJ) ) 

=< £ v/~ P(Gjo*(n [ (~)). 
\J>Jo / 

By our choice of j0: 

< e(Gjo  l )) 

n ~ l  m = n  

~ _ _  o 

P R O P O S I T I O N  9. If 

1 
s u p - -  Y, P ( E ) < o %  
B~,~ P(B) EeBn,~ 

then H~[(~)]  is isomorphic to a complemented subspace of P. 

PROOF. Take A ~ d . ,  n, A arbitrary, 

1 
M >  Y. P(E) 

P(A) E¢,~nA 

1 
= Y, Y~ P ( E )  

P(A ) ,~N ee~A) 

1 
= ~ P(G*(A)). 

P(A ) ,,~N 

Hence P(G*M(A )) =< P(A)/4 (cf. [2], p. 820). 
Given f =  Z hAaA withfEH~[(o~)]  we write G. "= G.(~)*: 

IIS'f) II'= f (.~NS2(AeG~ahAaA))I/2 

1 4_g "~m 

>4-Mj~=,5(n~NS2(Aea,~do) hAaAJ 

> 4M S( Y~ hAa.4)Za j\  .... G4Mm +j 
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Fix now n U N: 

Define now 

( ) = 8Mj_~ 1 S Y~ haaA ZG.,.. +: 
n A EG4u,, +,(fl) 

: S (  Y. {haaA " A ~G.(fl)}) XG. 

=~:S(Y~{hAaA'AEG.(~>})Z(G.(n)n.,,. 

S (hAa A : A ~ G.(fl) (~ sJ t . 

x,,, := ( (z  h~a~ :A ~ G,(n) n .~/,), II II-'). 

We have shown up to now that 

H ' [ ( .~ ) ]  is isomorphic to (~  X.,,) 

It remains to show that X.,t is uniformly complemented  in P. To do so, we 

observe that 

i.,l : X. j  ---) P, 

f ~ (( f /B ). P(B ), B E G.(f2) f~ ,.Oil) 

is an isomorphism (by Lemma 2(b)). 

Moreover,  by Lemma 2(a), for any sequence fin, B E G.(f~) N .~dl there exists 
a well-defined sequence (aa) such that for 

f = Y~ {hAaA, A ~ G.(~) N .~lt} 

we get 

~ = F s .  PW). 

Hence there exists P.,~ : l I ~ X.j  such that 

P..li.,, = idxo, and l] P.,, [1 " 11 i.,, II < C. 

PROOF o r  THEOREM 1, PART(b). Proposition 9 and Proposition 8(b) imply 
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that the hypothesis of  Proposition 8(a) is satisfies. Hence H~[ (~) ]  is isomor- 
phic to (Y Hi )t'. 

PROOF OF THEOREM l(a). 
Part a. This is Theorem B (cf. [5]). 
Part b. Combine Theorem B(b) and Proposition 8(b) to see that the 

hypothesis of Proposition 8(a) is satisfied. 
Part c. Combine Proposition 9 with the fact that any complemented 

subspace of  P is isomorphic to l ~ (cf. [3]). 
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